train.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
JiabinYang 已提交
14
from __future__ import print_function
15
import paddle as paddle
16
import paddle.fluid as fluid
17
import six
Y
Yu Yang 已提交
18 19 20 21 22 23 24 25 26 27 28
import sys

try:
    from paddle.fluid.contrib.trainer import *
    from paddle.fluid.contrib.inferencer import *
except ImportError:
    print(
        "In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib",
        file=sys.stderr)
    from paddle.fluid.trainer import *
    from paddle.fluid.inferencer import *
29 30 31
import numpy
import sys
from functools import partial
H
Helin Wang 已提交
32

33 34
import math
import os
D
dzhwinter 已提交
35

36 37
EMBED_SIZE = 32
HIDDEN_SIZE = 256
H
Helin Wang 已提交
38
N = 5
39 40
BATCH_SIZE = 100

R
root 已提交
41
use_cuda = True  # set to True if training with GPU
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)


def inference_program(is_sparse):
    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    fourth_word = fluid.layers.data(name='fourthw', shape=[1], dtype='int64')

    embed_first = fluid.layers.embedding(
        input=first_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_second = fluid.layers.embedding(
        input=second_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_third = fluid.layers.embedding(
        input=third_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_fourth = fluid.layers.embedding(
        input=fourth_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_fourth], axis=1)
    hidden1 = fluid.layers.fc(
        input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    return predict_word


def train_program(is_sparse):
    # The declaration of 'next_word' must be after the invoking of inference_program,
    # or the data input order of train program would be [next_word, firstw, secondw,
    # thirdw, fourthw], which is not correct.
    predict_word = inference_program(is_sparse)
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(cost)
    return avg_cost


def optimizer_func():
    return fluid.optimizer.AdagradOptimizer(
        learning_rate=3e-3,
        regularization=fluid.regularizer.L2DecayRegularizer(8e-4))
H
Helin Wang 已提交
101 102


103 104 105 106 107 108 109
def train(use_cuda, train_program, params_dirname):
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
110

H
Helin Wang 已提交
111
    def event_handler(event):
Y
yuyang 已提交
112
        if isinstance(event, EndStepEvent):
113 114 115 116
            outs = trainer.test(
                reader=test_reader,
                feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])
            avg_cost = outs[0]
P
Peng Li 已提交
117

118
            if event.step % 10 == 0:
J
JiabinYang 已提交
119
                print("Step %d: Average Cost %f" % (event.step, avg_cost))
120

121 122 123
            # If average cost is lower than 5.8, we consider the model good enough to stop.
            # Note 5.8 is a relatively high value. In order to get a better model, one should
            # aim for avg_cost lower than 3.5. But the training could take longer time.
124
            if avg_cost < 5.8:
125 126
                trainer.save_params(params_dirname)
                trainer.stop()
H
Helin Wang 已提交
127

128 129 130
            if math.isnan(avg_cost):
                sys.exit("got NaN loss, training failed.")

Y
yuyang 已提交
131
    trainer = Trainer(
132 133 134 135 136 137 138 139 140 141 142 143 144 145
        train_func=train_program,
        # optimizer=fluid.optimizer.SGD(learning_rate=0.001),
        optimizer_func=optimizer_func,
        place=place)

    trainer.train(
        reader=train_reader,
        num_epochs=1,
        event_handler=event_handler,
        feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
yuyang 已提交
146
    inferencer = Inferencer(
147 148 149 150 151 152 153 154
        infer_func=inference_program, param_path=params_dirname, place=place)

    # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
    # is simply an index to look up for the corresponding word vector and hence
    # the shape of word (base_shape) should be [1]. The length-based level of
    # detail (lod) info of each LoDtensor should be [[1]] meaning there is only
    # one lod_level and there is only one sequence of one word on this level.
    # Note that lod info should be a list of lists.
155 156 157 158 159

    data1 = [[211]]  # 'among'
    data2 = [[6]]  # 'a'
    data3 = [[96]]  # 'group'
    data4 = [[4]]  # 'of'
160
    lod = [[1]]
161 162 163 164 165

    first_word = fluid.create_lod_tensor(data1, lod, place)
    second_word = fluid.create_lod_tensor(data2, lod, place)
    third_word = fluid.create_lod_tensor(data3, lod, place)
    fourth_word = fluid.create_lod_tensor(data4, lod, place)
166 167 168 169 170 171 172 173 174 175 176

    result = inferencer.infer(
        {
            'firstw': first_word,
            'secondw': second_word,
            'thirdw': third_word,
            'fourthw': fourth_word
        },
        return_numpy=False)

    print(numpy.array(result[0]))
D
daming-lu 已提交
177 178
    most_possible_word_index = numpy.argmax(result[0])
    print(most_possible_word_index)
D
daming-lu 已提交
179
    print([
180
        key for key, value in six.iteritems(word_dict)
D
daming-lu 已提交
181 182
        if value == most_possible_word_index
    ][0])
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199


def main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    params_dirname = "word2vec.inference.model"

    train(
        use_cuda=use_cuda,
        train_program=partial(train_program, is_sparse),
        params_dirname=params_dirname)

    infer(
        use_cuda=use_cuda,
        inference_program=partial(inference_program, is_sparse),
        params_dirname=params_dirname)
200

H
Helin Wang 已提交
201 202

if __name__ == '__main__':
203
    main(use_cuda=use_cuda, is_sparse=True)