train.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
JiabinYang 已提交
14
from __future__ import print_function
H
Helin Wang 已提交
15
import paddle.v2 as paddle
16
import paddle.fluid as fluid
Y
Yu Yang 已提交
17 18 19 20 21 22 23 24 25 26 27
import sys

try:
    from paddle.fluid.contrib.trainer import *
    from paddle.fluid.contrib.inferencer import *
except ImportError:
    print(
        "In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib",
        file=sys.stderr)
    from paddle.fluid.trainer import *
    from paddle.fluid.inferencer import *
28 29 30
import numpy
import sys
from functools import partial
H
Helin Wang 已提交
31

32 33
import math
import os
D
dzhwinter 已提交
34

35 36
EMBED_SIZE = 32
HIDDEN_SIZE = 256
H
Helin Wang 已提交
37
N = 5
38 39
BATCH_SIZE = 100

W
Wang,Jeff 已提交
40
use_cuda = False  # set to True if training with GPU
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)


def inference_program(is_sparse):
    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    fourth_word = fluid.layers.data(name='fourthw', shape=[1], dtype='int64')

    embed_first = fluid.layers.embedding(
        input=first_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_second = fluid.layers.embedding(
        input=second_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_third = fluid.layers.embedding(
        input=third_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_fourth = fluid.layers.embedding(
        input=fourth_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_fourth], axis=1)
    hidden1 = fluid.layers.fc(
        input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    return predict_word


def train_program(is_sparse):
    # The declaration of 'next_word' must be after the invoking of inference_program,
    # or the data input order of train program would be [next_word, firstw, secondw,
    # thirdw, fourthw], which is not correct.
    predict_word = inference_program(is_sparse)
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(cost)
    return avg_cost


def optimizer_func():
    return fluid.optimizer.AdagradOptimizer(
        learning_rate=3e-3,
        regularization=fluid.regularizer.L2DecayRegularizer(8e-4))
H
Helin Wang 已提交
100 101


102 103 104 105 106 107 108
def train(use_cuda, train_program, params_dirname):
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
109

H
Helin Wang 已提交
110
    def event_handler(event):
Y
yuyang 已提交
111
        if isinstance(event, EndStepEvent):
112 113 114 115
            outs = trainer.test(
                reader=test_reader,
                feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])
            avg_cost = outs[0]
P
Peng Li 已提交
116

117
            if event.step % 10 == 0:
J
JiabinYang 已提交
118
                print("Step %d: Average Cost %f" % (event.step, avg_cost))
119

120 121 122
            # If average cost is lower than 5.8, we consider the model good enough to stop.
            # Note 5.8 is a relatively high value. In order to get a better model, one should
            # aim for avg_cost lower than 3.5. But the training could take longer time.
123
            if avg_cost < 5.8:
124 125
                trainer.save_params(params_dirname)
                trainer.stop()
H
Helin Wang 已提交
126

127 128 129
            if math.isnan(avg_cost):
                sys.exit("got NaN loss, training failed.")

Y
yuyang 已提交
130
    trainer = Trainer(
131 132 133 134 135 136 137 138 139 140 141 142 143 144
        train_func=train_program,
        # optimizer=fluid.optimizer.SGD(learning_rate=0.001),
        optimizer_func=optimizer_func,
        place=place)

    trainer.train(
        reader=train_reader,
        num_epochs=1,
        event_handler=event_handler,
        feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
yuyang 已提交
145
    inferencer = Inferencer(
146 147 148 149 150 151 152 153
        infer_func=inference_program, param_path=params_dirname, place=place)

    # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
    # is simply an index to look up for the corresponding word vector and hence
    # the shape of word (base_shape) should be [1]. The length-based level of
    # detail (lod) info of each LoDtensor should be [[1]] meaning there is only
    # one lod_level and there is only one sequence of one word on this level.
    # Note that lod info should be a list of lists.
154 155 156 157 158

    data1 = [[211]]  # 'among'
    data2 = [[6]]  # 'a'
    data3 = [[96]]  # 'group'
    data4 = [[4]]  # 'of'
159
    lod = [[1]]
160 161 162 163 164

    first_word = fluid.create_lod_tensor(data1, lod, place)
    second_word = fluid.create_lod_tensor(data2, lod, place)
    third_word = fluid.create_lod_tensor(data3, lod, place)
    fourth_word = fluid.create_lod_tensor(data4, lod, place)
165 166 167 168 169 170 171 172 173 174 175

    result = inferencer.infer(
        {
            'firstw': first_word,
            'secondw': second_word,
            'thirdw': third_word,
            'fourthw': fourth_word
        },
        return_numpy=False)

    print(numpy.array(result[0]))
D
daming-lu 已提交
176 177
    most_possible_word_index = numpy.argmax(result[0])
    print(most_possible_word_index)
D
daming-lu 已提交
178 179 180 181
    print([
        key for key, value in word_dict.iteritems()
        if value == most_possible_word_index
    ][0])
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198


def main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    params_dirname = "word2vec.inference.model"

    train(
        use_cuda=use_cuda,
        train_program=partial(train_program, is_sparse),
        params_dirname=params_dirname)

    infer(
        use_cuda=use_cuda,
        inference_program=partial(inference_program, is_sparse),
        params_dirname=params_dirname)
199

H
Helin Wang 已提交
200 201

if __name__ == '__main__':
202
    main(use_cuda=use_cuda, is_sparse=True)