index.html 33.9 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
C
choijulie 已提交
43
# Semantic Role Labeling
Y
Yu Yang 已提交
44

C
choijulie 已提交
45
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles).
Y
Yu Yang 已提交
46

L
Luo Tao 已提交
47
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yu Yang 已提交
48

C
choijulie 已提交
49
## Background
Y
Yu Yang 已提交
50

C
choijulie 已提交
51
Natural language analysis techniques consist of lexical, syntactic, and semantic analysis. **Semantic Role Labeling (SRL)** is an instance of **Shallow Semantic Analysis**.
Y
Yu Yang 已提交
52

C
choijulie 已提交
53
In a sentence, a **predicate** states a property or a characterization of a *subject*, such as what it does and what it is like. The predicate represents the core of an event, whereas the words accompanying the predicate are **arguments**. A **semantic role** refers to the abstract role an argument of a predicate take on in the event, including *agent*, *patient*, *theme*, *experiencer*, *beneficiary*, *instrument*, *location*, *goal*, and *source*.
Y
Yu Yang 已提交
54

C
choijulie 已提交
55
In the following example of a Chinese sentence, "to encounter" is the predicate (*pred*); "Ming" is the *agent*; "Hong" is the *patient*; "yesterday" and "evening" are the *time*; finally, "the park" is the *location*.
Y
Yu Yang 已提交
56

C
choijulie 已提交
57 58 59 60 61 62 63 64 65 66 67
$$\mbox{[小明 Ming]}_{\mbox{Agent}}\mbox{[昨天 yesterday]}_{\mbox{Time}}\mbox{[晚上 evening]}_\mbox{Time}\mbox{在[公园 a park]}_{\mbox{Location}}\mbox{[遇到 to encounter]}_{\mbox{Predicate}}\mbox{了[小红 Hong]}_{\mbox{Patient}}\mbox{。}$$

Instead of analyzing the semantic information, **Semantic Role Labeling** (**SRL**) identifies the relation between the predicate and the other constituents surrounding it. The predicate-argument structures are labeled as specific semantic roles. A wide range of natural language understanding tasks, including *information extraction*, *discourse analysis*, and *deepQA*. Research usually assumes a predicate of a sentence to be specified; the only task is to identify its arguments and their semantic roles.

Conventional SRL systems mostly build on top of syntactic analysis, usually consisting of five steps:

1. Construct a syntax tree, as shown in Fig. 1
2. Identity the candidate arguments of the given predicate on the tree.
3. Prune the most unlikely candidate arguments.
4. Identify the real arguments, often by a binary classifier.
5. Multi-classify on results from step 4 to label the semantic roles. Steps 2 and 3 usually introduce hand-designed features based on syntactic analysis (step 1).
Y
Yu Yang 已提交
68 69 70


<div  align="center">
C
choijulie 已提交
71 72
<img src="image/dependency_parsing_en.png" width = "80%" align=center /><br>
Fig 1. Syntax tree
Y
Yu Yang 已提交
73 74 75
</div>


C
choijulie 已提交
76 77 78
However, a complete syntactic analysis requires identifying the relation among all constituents. Thus, the accuracy of SRL is sensitive to the preciseness of the syntactic analysis, making SRL challenging. To reduce its complexity and obtain some information on the syntactic structures, we often use *shallow syntactic analysis* a.k.a. partial parsing or chunking. Unlike complete syntactic analysis, which requires the construction of the complete parsing tree, *Shallow Syntactic Analysis* only requires identifying some independent constituents with relatively simple structures, such as verb phrases (chunk). To avoid difficulties in constructing a syntax tree with high accuracy, some work\[[1](#Reference)\] proposed semantic chunking-based SRL methods, which reduces SRL into a sequence tagging problem. Sequence tagging tasks classify syntactic chunks using **BIO representation**. For syntactic chunks forming role A, its first chunk receives the B-A tag (Begin) and the remaining ones receive the tag I-A (Inside); in the end, the chunks left out receive the tag O.

The BIO representation of above example is shown in Fig.1.
Y
Yu Yang 已提交
79 80

<div  align="center">
C
choijulie 已提交
81 82
<img src="image/bio_example_en.png" width = "90%"  align=center /><br>
Fig 2. BIO representation
Y
Yu Yang 已提交
83 84
</div>

C
choijulie 已提交
85 86 87 88 89 90 91
This example illustrates the simplicity of sequence tagging, since

1. It only relies on shallow syntactic analysis, reduces the precision requirement of syntactic analysis;
2. Pruning the candidate arguments is no longer necessary;
3. Arguments are identified and tagged at the same time. Simplifying the workflow reduces the risk of accumulating errors; oftentimes, methods that unify multiple steps boost performance.

In this tutorial, our SRL system is built as an end-to-end system via a neural network. The system takes only text sequences as input, without using any syntactic parsing results or complex hand-designed features. The public dataset [CoNLL-2004 and CoNLL-2005 Shared Tasks](http://www.cs.upc.edu/~srlconll/) is used for the following task: given a sentence with predicates marked, identify the corresponding arguments and their semantic roles through sequence tagging.
Y
Yu Yang 已提交
92

C
choijulie 已提交
93
## Model
Y
Yu Yang 已提交
94

C
choijulie 已提交
95
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
Y
Yu Yang 已提交
96

C
choijulie 已提交
97
### Stacked Recurrent Neural Network
Y
Yu Yang 已提交
98

C
choijulie 已提交
99
*Deep Neural Networks* can extract hierarchical representations. The higher layers can form relatively abstract/complex representations, based on primitive features discovered through the lower layers. Unfolding LSTMs through time results in a deep feed-forward neural network. This is because any computational path between the input at time $k < t$ to the output at time $t$ crosses several nonlinear layers. On the other hand, due to parameter sharing over time, LSTMs are also *shallow*; that is, the computation carried out at each time-step is just a linear transformation. Deep LSTM networks are typically constructed by stacking multiple LSTM layers on top of each other and taking the output from lower LSTM layer at time $t$ as the input of upper LSTM layer at time $t$. Deep, hierarchical neural networks can be efficient at representing some functions and modeling varying-length dependencies\[[2](#Reference)\].
Y
Yu Yang 已提交
100 101


C
choijulie 已提交
102
However, in a deep LSTM network, any gradient propagated back in depth needs to traverse a large number of nonlinear steps. As a result, while LSTMs of 4 layers can be trained properly, those with 4-8 have much worse performance. Conventional LSTMs prevent back-propagated errors from vanishing or exploding by introducing shortcut connections to skip the intermediate nonlinear layers. Therefore, deep LSTMs can consider shortcut connections in depth as well.
Y
Yu Yang 已提交
103 104


C
choijulie 已提交
105 106 107 108 109 110 111 112 113
A single LSTM cell has three operations:

1. input-to-hidden: map input $x$ to the input of the forget gates, input gates, memory cells and output gates by linear transformation (i.e., matrix mapping);
2. hidden-to-hidden: calculate forget gates, input gates, output gates and update memory cell, this is the main part of LSTMs;
3. hidden-to-output: this part typically involves an activation operation on hidden states.

Based on the stacked LSTMs, we add shortcut connections: take the input-to-hidden from the previous layer as a new input and learn another linear transformation.

Fig.3 illustrates the final stacked recurrent neural networks.
Y
Yu Yang 已提交
114

Y
Update  
Yi Wang 已提交
115
<p align="center">  
C
choijulie 已提交
116 117
<img src="./image/stacked_lstm_en.png" width = "40%"  align=center><br>
Fig 3. Stacked Recurrent Neural Networks
Y
Yu Yang 已提交
118 119
</p>

C
choijulie 已提交
120
### Bidirectional Recurrent Neural Network
Y
Yu Yang 已提交
121

C
choijulie 已提交
122 123 124
While LSTMs can summarize the history -- all the previous input seen up until now -- they can not see the future. Because most NLP (natural language processing) tasks provide the entirety of sentences, sequential learning can benefit from having the future encoded as well as the history.

To address, we can design a bidirectional recurrent neural network by making a minor modification. A higher LSTM layer can process the sequence in reversed direction with regards to its immediate lower LSTM layer, i.e., deep LSTM layers take turns to train on input sequences from left-to-right and right-to-left. Therefore, LSTM layers at time-step $t$ can see both histories and the future, starting from the second layer. Fig. 4 illustrates the bidirectional recurrent neural networks.
Y
Yu Yang 已提交
125 126


Y
Update  
Yi Wang 已提交
127
<p align="center">  
C
choijulie 已提交
128 129
<img src="./image/bidirectional_stacked_lstm_en.png" width = "60%" align=center><br>
Fig 4. Bidirectional LSTMs
Y
Yu Yang 已提交
130 131
</p>

132
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md)
C
choijulie 已提交
133 134

### Conditional Random Field (CRF)
Y
Yu Yang 已提交
135

C
choijulie 已提交
136
Typically, a neural network's lower layers learn representations while its very top layer learns the final task. These principles can guide our problem-solving approaches. In SRL tasks, a **Conditional Random Field** (*CRF*) is built on top of the network in order to perform the final prediction to tag sequences. It takes as input the representations provided by the last LSTM layer.
Y
Yu Yang 已提交
137 138


C
choijulie 已提交
139
The CRF is an undirected probabilistic graph with nodes denoting random variables and edges denoting dependencies between these variables. In essence, CRFs learn the conditional probability $P(Y|X)$, where $X = (x_1, x_2, ... , x_n)$ are sequences of input and $Y = (y_1, y_2, ... , y_n)$ are label sequences; to decode, simply search through $Y$ for a sequence that maximizes the conditional probability $P(Y|X)$, i.e., $Y^* = \mbox{arg max}_{Y} P(Y | X)$。
Y
Yu Yang 已提交
140

C
choijulie 已提交
141
Sequence tagging tasks do not assume a lot of conditional independence, because they are only concerned with the input and the output being linear sequences. Thus, the graph model of sequence tagging tasks is usually a simple chain or line, which results in a **Linear-Chain Conditional Random Field**, shown in Fig.5.
Y
Yu Yang 已提交
142

Y
Update  
Yi Wang 已提交
143
<p align="center">  
Y
Yu Yang 已提交
144
<img src="./image/linear_chain_crf.png" width = "35%" align=center><br>
C
choijulie 已提交
145
Fig 5. Linear Chain Conditional Random Field used in SRL tasks
Y
Yu Yang 已提交
146 147
</p>

C
choijulie 已提交
148
By the fundamental theorem of random fields \[[5](#Reference)\], the joint distribution over the label sequence $Y$ given $X$ has the form:
Y
Yu Yang 已提交
149 150 151

$$p(Y | X) = \frac{1}{Z(X)} \text{exp}\left(\sum_{i=1}^{n}\left(\sum_{j}\lambda_{j}t_{j} (y_{i - 1}, y_{i}, X, i) + \sum_{k} \mu_k s_k (y_i, X, i)\right)\right)$$

C
choijulie 已提交
152 153

where, $Z(X)$ is normalization constant, ${t_j}$ represents the feature functions defined on edges called the *transition feature*, which denotes the transition probabilities from $y_{i-1}$ to $y_i$ given input sequence $X$. ${s_k}$ represents the feature function defined on nodes, called the state feature, denoting the probability of $y_i$ given input sequence $X$. In addition, $\lambda_j$ and $\mu_k$ are weights corresponding to $t_j$ and $s_k$. Alternatively, $t$ and $s$ can be written in the same form that depends on $y_{i - 1}$, $y_i$, $X$, and $i$. Taking its summation over all nodes $i$, we have: $f_{k}(Y, X) = \sum_{i=1}^{n}f_k({y_{i - 1}, y_i, X, i})$, which defines the *feature function* $f$. Thus, $P(Y|X)$ can be written as:
Y
Yu Yang 已提交
154 155 156

$$p(Y|X, W) = \frac{1}{Z(X)}\text{exp}\sum_{k}\omega_{k}f_{k}(Y, X)$$

C
choijulie 已提交
157 158
where $\omega$ are the weights to the feature function that the CRF learns. While training, given input sequences and label sequences $D = \left[(X_1,  Y_1), (X_2 , Y_2) , ... , (X_N, Y_N)\right]$, by maximum likelihood estimation (**MLE**), we construct the following objective function:

Y
Yu Yang 已提交
159

M
Mimee 已提交
160
$$\DeclareMathOperator*{\argmax}{arg\,max} L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$
Y
Yu Yang 已提交
161 162


163
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md#beam-search-algorithm)).
C
choijulie 已提交
164 165 166 167

### Deep Bidirectional LSTM (DB-LSTM) SRL model

Given predicates and a sentence, SRL tasks aim to identify arguments of the given predicate and their semantic roles. If a sequence has $n$ predicates, we will process this sequence $n$ times. Here is the breakdown of a straight-forward model:
Y
Yu Yang 已提交
168

C
choijulie 已提交
169 170 171 172 173 174
1. Construct inputs;
 - input 1: predicate, input 2: sentence
 - expand input 1 into a sequence of the same length with input 2's sentence, using one-hot representation;
2. Convert the one-hot sequences from step 1 to vector sequences via a word embedding's lookup table;
3. Learn the representation of input sequences by taking vector sequences from step 2 as inputs;
4. Take the representation from step 3 as input, label sequence as supervisory signal, and realize sequence tagging tasks.
Y
Yu Yang 已提交
175

C
choijulie 已提交
176
Here, we propose some improvements by introducing two simple but effective features:
Y
Yu Yang 已提交
177

C
choijulie 已提交
178
- predicate context (**ctx-p**): A single predicate word may not describe all the predicate information, especially when the same words appear multiple times in a sentence. With the expanded context, the ambiguity can be largely eliminated. Thus, we extract $n$ words before and after predicate to construct a window chunk.
Y
Yu Yang 已提交
179

C
choijulie 已提交
180
- region mark ($m_r$): The binary marker on a word, $m_r$, takes the value of $1$ when the word is in the predicate context region, and $0$ if not.
Y
Yu Yang 已提交
181

C
choijulie 已提交
182 183 184 185 186 187 188 189
After these modifications, the model is as follows, as illustrated in Figure 6:

1. Construct inputs
 - Input 1: word sequence. Input 2: predicate. Input 3: predicate context, extract $n$ words before and after predicate. Input 4: region mark sequence, where an entry is 1 if word is located in the predicate context region, 0 otherwise.
 - expand input 2~3 into sequences with the same length with input 1
2. Convert input 1~4 to vector sequences via word embedding lookup tables; While input 1 and 3 shares the same lookup table, input 2 and 4 have separate lookup tables.
3. Take the four vector sequences from step 2 as inputs to bidirectional LSTMs; Train the LSTMs to update representations.
4. Take the representation from step 3 as input to CRF, label sequence as supervisory signal, and complete sequence tagging tasks.
Y
Yu Yang 已提交
190 191


Y
Update  
Yi Wang 已提交
192
<div  align="center">  
C
choijulie 已提交
193 194
<img src="image/db_lstm_network_en.png" width = "60%"  align=center /><br>
Fig 6. DB-LSTM for SRL tasks
Y
Yu Yang 已提交
195 196
</div>

C
choijulie 已提交
197
## Data Preparation
Y
Yu Yang 已提交
198

C
choijulie 已提交
199
In the tutorial, we use [CoNLL 2005](http://www.cs.upc.edu/~srlconll/) SRL task open dataset as an example. Note that the training set and development set of the CoNLL 2005 SRL task are not free to download after the competition. Currently, only the test set can be obtained, including 23 sections of the Wall Street Journal and three sections of the Brown corpus. In this tutorial, we use the WSJ corpus as the training dataset to explain the model. However, since the training set is small, for a usable neural network SRL system, please consider paying for the full corpus.
Y
Yu Yang 已提交
200

C
choijulie 已提交
201
The original data includes a variety of information such as POS tagging, naming entity recognition, syntax tree, etc. In this tutorial, we only use the data under `test.wsj/words/` (text sequence) and `test.wsj/props/` (label results). The data directory used in this tutorial is as follows:
Y
Yu Yang 已提交
202 203 204 205 206 207 208 209

```text
conll05st-release/
└── test.wsj
    ├── props  # 标注结果
    └── words  # 输入文本序列
```

C
choijulie 已提交
210
The annotation information is derived from the results of Penn TreeBank\[[7](#references)\] and PropBank \[[8](# references)\]. The labeling of the PropBank is different from the labeling methods mentioned before, but shares with it the same underlying principle. For descriptions of the labeling, please refer to the paper \[[9](#references)\].
Y
Yu Yang 已提交
211

C
choijulie 已提交
212
The raw data needs to be preprocessed into formats that PaddlePaddle can handle. The preprocessing consists of the following steps:
L
Luo Tao 已提交
213

C
choijulie 已提交
214 215 216 217 218
1. Merge the text sequence and the tag sequence into the same record;
2. If a sentence contains $n$ predicates, the sentence will be processed $n$ times into $n$ separate training samples, each sample with a different predicate;
3. Extract the predicate context and construct the predicate context region marker;
4. Construct the markings in BIO format;
5. Obtain the integer index corresponding to the word according to the dictionary.
L
Luo Tao 已提交
219 220 221

```python
# import paddle.v2.dataset.conll05 as conll05
C
choijulie 已提交
222 223 224
# conll05.corpus_reader does step 1 and 2 as mentioned above.
# conll05.reader_creator does step 3 to 5.
# conll05.test gets preprocessed training instances.
L
Luo Tao 已提交
225
```
Y
Yu Yang 已提交
226

C
choijulie 已提交
227
After preprocessing, a training sample contains nine features, namely: word sequence, predicate, predicate context (5 columns), region mark sequence, label sequence. The following table is an example of a training sample.
Y
Yu Yang 已提交
228

C
choijulie 已提交
229
| word sequence | predicate | predicate context(5 columns) | region mark sequence | label sequence|
Y
Yu Yang 已提交
230 231 232 233 234 235 236 237 238 239
|---|---|---|---|---|
| A | set | n't been set . × | 0 | B-A1 |
| record | set | n't been set . × | 0 | I-A1 |
| date | set | n't been set . × | 0 | I-A1 |
| has | set | n't been set . × | 0 | O |
| n't | set | n't been set . × | 1 | B-AM-NEG |
| been | set | n't been set . × | 1 | O |
| set | set | n't been set . × | 1 | B-V |
| . | set | n't been set . × | 1 | O |

C
choijulie 已提交
240
In addition to the data, we provide following resources:
Y
Yu Yang 已提交
241

C
choijulie 已提交
242
| filename | explanation |
L
Luo Tao 已提交
243
|---|---|
C
choijulie 已提交
244 245 246 247
| word_dict | dictionary of input sentences, total 44068 words |
| label_dict | dictionary of labels, total 106 labels |
| predicate_dict | predicate dictionary, total 3162 predicates |
| emb | a pre-trained word vector lookup table, 32-dimentional |
Y
Yu Yang 已提交
248

C
choijulie 已提交
249
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
Y
Yu Yang 已提交
250

C
choijulie 已提交
251
Here we fetch the dictionary, and print its size:
Y
Yu Yang 已提交
252 253

```python
D
dangqingqing 已提交
254 255
import math
import numpy as np
256
import gzip
L
Luo Tao 已提交
257 258
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
259
import paddle.v2.evaluator as evaluator
Y
Yu Yang 已提交
260

D
dangqingqing 已提交
261 262
paddle.init(use_gpu=False, trainer_count=1)

L
Luo Tao 已提交
263 264 265 266
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
Y
Yu Yang 已提交
267

D
dangqingqing 已提交
268 269 270
print word_dict_len
print label_dict_len
print pred_len
Y
Yu Yang 已提交
271 272
```

C
choijulie 已提交
273
## Model Configuration
Y
Yu Yang 已提交
274

C
choijulie 已提交
275
- Define input data dimensions and model hyperparameters.
Y
Yu Yang 已提交
276

D
dangqingqing 已提交
277
```python
C
choijulie 已提交
278 279 280 281 282 283 284 285 286 287 288 289
mark_dict_len = 2    # value range of region mark. Region mark is either 0 or 1, so range is 2
word_dim = 32        # word vector dimension
mark_dim = 5         # adjacent dimension
hidden_dim = 512     # the dimension of LSTM hidden layer vector is 128 (512/4)
depth = 8            # depth of stacked LSTM

# There are 9 features per sample, so we will define 9 data layers.
# They type for each layer is integer_value_sequence.
def d_type(value_range):
    return paddle.data_type.integer_value_sequence(value_range)

# word sequence
D
dangqingqing 已提交
290
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
C
choijulie 已提交
291
# predicate
292
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
D
dangqingqing 已提交
293

C
choijulie 已提交
294
# 5 features for predicate context
295
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
D
dangqingqing 已提交
296 297 298 299 300
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))

C
choijulie 已提交
301
# region marker sequence
D
dangqingqing 已提交
302 303
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

C
choijulie 已提交
304
# label sequence
D
dangqingqing 已提交
305 306
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
```
307

C
choijulie 已提交
308
Note that `hidden_dim = 512` means a LSTM hidden vector of 128 dimension (512/4). Please refer to PaddlePaddle's official documentation for detail: [lstmemory](http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/layers.html#lstmemory)。
D
dangqingqing 已提交
309

C
choijulie 已提交
310
- Transform the word sequence itself, the predicate, the predicate context, and the region mark sequence into embedded vector sequences.
D
dangqingqing 已提交
311

Y
Update  
Yi Wang 已提交
312
```python  
D
dangqingqing 已提交
313

C
choijulie 已提交
314 315
# Since word vectorlookup table is pre-trained, we won't update it this time.
# is_static being True prevents updating the lookup table during training.
D
dangqingqing 已提交
316
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
C
choijulie 已提交
317
# hyperparameter configurations
D
dangqingqing 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
default_std = 1 / math.sqrt(hidden_dim) / 3.0
std_default = paddle.attr.Param(initial_std=default_std)
std_0 = paddle.attr.Param(initial_std=0.)

predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(
        name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
```
Y
Yu Yang 已提交
338

C
choijulie 已提交
339
- 8 LSTM units are trained through alternating left-to-right / right-to-left order denoted by the variable `reverse`.
D
dangqingqing 已提交
340

Y
Update  
Yi Wang 已提交
341
```python  
D
dangqingqing 已提交
342
hidden_0 = paddle.layer.mixed(
343 344 345 346 347 348
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])
D
dangqingqing 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362

mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input=hidden_0,
    act=paddle.activation.Relu(),
    gate_act=paddle.activation.Sigmoid(),
    state_act=paddle.activation.Sigmoid(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

C
choijulie 已提交
363
# stack L-LSTM and R-LSTM with direct edges
D
dangqingqing 已提交
364 365 366 367
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
    mix_hidden = paddle.layer.mixed(
L
Luo Tao 已提交
368 369 370 371
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
D
dangqingqing 已提交
372 373 374
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
L
Luo Tao 已提交
375 376
        ])

D
dangqingqing 已提交
377 378
    lstm = paddle.layer.lstmemory(
        input=mix_hidden,
L
Luo Tao 已提交
379 380 381
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
D
dangqingqing 已提交
382
        reverse=((i % 2) == 1),
L
Luo Tao 已提交
383 384 385
        bias_attr=std_0,
        param_attr=lstm_para_attr)

D
dangqingqing 已提交
386 387 388
    input_tmp = [mix_hidden, lstm]
```

C
choijulie 已提交
389
- In PaddlePaddle, state features and transition features of a CRF are implemented by a fully connected layer and a CRF layer seperately. The fully connected layer with linear activation learns the state features, here we use paddle.layer.mixed (paddle.layer.fc can be uesed as well), and the CRF layer in PaddlePaddle: paddle.layer.crf only learns the transition features, which is a cost layer and is the last layer of the network. paddle.layer.crf outputs the log probability of true tag sequence as the cost by given the input sequence and it requires the true tag sequence as target in the learning process.
D
dangqingqing 已提交
390 391

```python
C
caoying03 已提交
392

C
choijulie 已提交
393 394 395
# The output of the top LSTM unit and its input are feed into a fully connected layer,
# size of which equals to size of tag labels.
# The fully connected layer learns the state features
C
caoying03 已提交
396

D
dangqingqing 已提交
397
feature_out = paddle.layer.mixed(
398 399 400 401 402 403
    size=label_dict_len,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=input_tmp[0], param_attr=hidden_para_attr),
        paddle.layer.full_matrix_projection(
C
choijulie 已提交
404
            input=input_tmp[1], param_attr=lstm_para_attr)], )
D
dangqingqing 已提交
405 406

crf_cost = paddle.layer.crf(
L
Luo Tao 已提交
407
    size=label_dict_len,
D
dangqingqing 已提交
408 409 410 411 412 413 414 415
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw',
        initial_std=default_std,
        learning_rate=mix_hidden_lr))
```

C
choijulie 已提交
416
- The CRF decoding layer is used for evaluation and inference. It shares weights with CRF layer.  The sharing of parameters among multiple layers is specified by using the same parameter name in these layers. If true tag sequence is provided in training process, `paddle.layer.crf_decoding` calculates labelling error for each input token and `evaluator.sum` sum the error over the entire sequence. Otherwise, `paddle.layer.crf_decoding`  generates the labelling tags.
D
dangqingqing 已提交
417 418 419 420 421 422 423

```python
crf_dec = paddle.layer.crf_decoding(
   size=label_dict_len,
   input=feature_out,
   label=target,
   param_attr=paddle.attr.Param(name='crfw'))
424
evaluator.sum(input=crf_dec)
D
dangqingqing 已提交
425
```
L
Luo Tao 已提交
426

C
choijulie 已提交
427
## Train model
L
Luo Tao 已提交
428

C
choijulie 已提交
429
### Create Parameters
L
Luo Tao 已提交
430

C
choijulie 已提交
431
All necessary parameters will be traced created given output layers that we need to use.
L
Luo Tao 已提交
432 433

```python
434
parameters = paddle.parameters.create(crf_cost)
Y
Yu Yang 已提交
435 436
```

C
choijulie 已提交
437
We can print out parameter name. It will be generated if not specified.
438

L
Luo Tao 已提交
439 440 441
```python
print parameters.keys()
```
Y
Yu Yang 已提交
442

C
choijulie 已提交
443
Now we load the pre-trained word lookup tables from word embeddings trained on the English language Wikipedia.
L
Luo Tao 已提交
444 445 446 447

```python
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
448 449
        f.read(16)
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
L
Luo Tao 已提交
450
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
Y
Yu Yang 已提交
451 452
```

C
choijulie 已提交
453
### Create Trainer
L
Luo Tao 已提交
454

C
choijulie 已提交
455
We will create trainer given model topology, parameters, and optimization method. We will use the most basic **SGD** method, which is a momentum optimizer with 0 momentum. Meanwhile, we will set learning rate and regularization.
L
Luo Tao 已提交
456 457 458 459

```python
optimizer = paddle.optimizer.Momentum(
    momentum=0,
460
    learning_rate=1e-3,
L
Luo Tao 已提交
461 462 463 464 465 466
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(cost=crf_cost,
                             parameters=parameters,
467 468
                             update_equation=optimizer,
                             extra_layers=crf_dec)
L
Luo Tao 已提交
469
```
Y
Yu Yang 已提交
470

C
choijulie 已提交
471
### Trainer
Y
Yu Yang 已提交
472

C
choijulie 已提交
473
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as the training data set. `conll05.test()` outputs one training instance at a time. It is shuffled and batched into mini batches, and used as input.
Y
Yu Yang 已提交
474 475

```python
L
Luo Tao 已提交
476 477
reader = paddle.batch(
    paddle.reader.shuffle(
478
        conll05.test(), buf_size=8192), batch_size=2)
Y
Yu Yang 已提交
479 480
```

C
choijulie 已提交
481
`feeding` is used to specify the correspondence between data instance and data layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` is matched to the data layer named `word_data`.
L
Luo Tao 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494

```python
feeding = {
    'word_data': 0,
    'ctx_n2_data': 1,
    'ctx_n1_data': 2,
    'ctx_0_data': 3,
    'ctx_p1_data': 4,
    'ctx_p2_data': 5,
    'verb_data': 6,
    'mark_data': 7,
    'target': 8
}
Y
Yu Yang 已提交
495 496
```

C
choijulie 已提交
497
`event_handler` can be used as callback for training events, it will be used as an argument for the `train` method. Following `event_handler` prints cost during training.
Y
Yu Yang 已提交
498

L
Luo Tao 已提交
499 500 501
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
502
        if event.batch_id and event.batch_id % 10 == 0:
503 504
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
505
        if event.batch_id % 400 == 0:
506 507 508 509 510 511
            result = trainer.test(reader=reader, feeding=feeding)
            print "\nTest with Pass %d, Batch %d, %s" % (event.pass_id, event.batch_id, result.metrics)

    if isinstance(event, paddle.event.EndPass):
        # save parameters
        with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
512
            parameters.to_tar(f)
513 514 515

        result = trainer.test(reader=reader, feeding=feeding)
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
L
Luo Tao 已提交
516 517
```

C
choijulie 已提交
518
`trainer.train` will train the model.
L
Luo Tao 已提交
519 520 521 522 523

```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
C
choijulie 已提交
524
    num_passes=10000,
L
Luo Tao 已提交
525
    feeding=feeding)
Y
Yu Yang 已提交
526 527
```

C
choijulie 已提交
528
### Application
529

C
choijulie 已提交
530
Aftern training is done, we need to select an optimal model based one performance index to do inference. In this task, one can simply select the model with the least number of marks on the test set. The `paddle.layer.crf_decoding` layer is used in the inference, but its inputs does not include the ground truth label.
531 532 533 534 535 536 537 538

```python
predict = paddle.layer.crf_decoding(
    size=label_dict_len,
    input=feature_out,
    param_attr=paddle.attr.Param(name='crfw'))
```

C
choijulie 已提交
539
Here, using one testing sample as an example.
540 541 542 543 544 545 546 547 548 549

```python
test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
    test_data.append(item[0:8])
    if len(test_data) == 1:
        break
```

C
choijulie 已提交
550 551
The inference interface `paddle.infer` returns the index of predicting labels. Then printing the tagging results based dictionary `labels_reverse`.

552 553 554 555 556 557 558 559 560 561 562 563

```python
labs = paddle.infer(
    output_layer=predict, parameters=parameters, input=test_data, field='id')
assert len(labs) == len(test_data[0][0])
labels_reverse={}
for (k,v) in label_dict.items():
    labels_reverse[v]=k
pre_lab = [labels_reverse[i] for i in labs]
print pre_lab
```

C
choijulie 已提交
564
## Conclusion
Y
Yu Yang 已提交
565

C
choijulie 已提交
566
Semantic Role Labeling is an important intermediate step in a wide range of natural language processing tasks. In this tutorial, we use SRL as an example to illustrate using PaddlePaddle to do sequence tagging tasks. The models proposed are from our published paper\[[10](#Reference)\]. We only use test data for illustration since the training data on the CoNLL 2005 dataset is not completely public. This aims to propose an end-to-end neural network model with fewer dependencies on natural language processing tools but is comparable, or even better than traditional models in terms of performance. Please check out our paper for more information and discussions.
Y
Yu Yang 已提交
567

C
choijulie 已提交
568
## Reference
Y
Yu Yang 已提交
569 570 571 572 573 574 575 576 577 578 579 580
1. Sun W, Sui Z, Wang M, et al. [Chinese semantic role labeling with shallow parsing](http://www.aclweb.org/anthology/D09-1#page=1513)[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009: 1475-1483.
2. Pascanu R, Gulcehre C, Cho K, et al. [How to construct deep recurrent neural networks](https://arxiv.org/abs/1312.6026)[J]. arXiv preprint arXiv:1312.6026, 2013.
3. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](https://arxiv.org/abs/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
4. Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[J]. arXiv preprint arXiv:1409.0473, 2014.
5. Lafferty J, McCallum A, Pereira F. [Conditional random fields: Probabilistic models for segmenting and labeling sequence data](http://www.jmlr.org/papers/volume15/doppa14a/source/biblio.bib.old)[C]//Proceedings of the eighteenth international conference on machine learning, ICML. 2001, 1: 282-289.
6. 李航. 统计学习方法[J]. 清华大学出版社, 北京, 2012.
7. Marcus M P, Marcinkiewicz M A, Santorini B. [Building a large annotated corpus of English: The Penn Treebank](http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports)[J]. Computational linguistics, 1993, 19(2): 313-330.
8. Palmer M, Gildea D, Kingsbury P. [The proposition bank: An annotated corpus of semantic roles](http://www.mitpressjournals.org/doi/pdfplus/10.1162/0891201053630264)[J]. Computational linguistics, 2005, 31(1): 71-106.
9. Carreras X, Màrquez L. [Introduction to the CoNLL-2005 shared task: Semantic role labeling](http://www.cs.upc.edu/~srlconll/st05/papers/intro.pdf)[C]//Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005: 152-164.
10. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
L
Luo Tao 已提交
581
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
582

Y
Yu Yang 已提交
583 584 585 586 587 588 589
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
590 591 592
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
593
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
594 595
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
596
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
597
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
598 599 600
  }
});
document.getElementById("context").innerHTML = marked(
601
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
602 603
</script>
</body>