Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
## Problem Setup
Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity.
The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
## Introduction
When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, the equivalent task is to train a model to recognize hand-written digits on the dataset [MNIST](http://yann.lecun.com/exdb/mnist/). Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered.
The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
## Introduction
When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, the equivalent task is to train a model to recognize hand-written digits on the dataset [MNIST](http://yann.lecun.com/exdb/mnist/). Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book) for installation instructions.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book) for installation instructions.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book) for installation instructions.
The source code for this chapter is at [book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification). First-time users, please refer to PaddlePaddle [Installation Tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book) for installation instructions.
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
This is intended as a reference tutorial. The source code of this tutorial lives on [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source code of this tutorial is in [book/recommender_system](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/07.label_semantic_roles).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book).
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book) if you are a first time user.
The source codes is located at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the PaddlePaddle [installation tutorial](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book) if you are a first time user.