提交 ec34d662 编写于 作者: H Helin Wang

fix build script, en link and dead link

上级 e1d1aab9
......@@ -11,7 +11,7 @@ cur_path="$(cd "$(dirname "$0")" && pwd -P)"
cd $cur_path/../
#convert md to ipynb
for file in */{README,README\.en}.md ; do
for file in */{README,README\.cn}.md ; do
~/go/bin/markdown-to-ipynb < $file > ${file%.*}".ipynb"
if [ $? -ne 0 ]; then
echo >&2 "markdown-to-ipynb $file error"
......@@ -24,7 +24,7 @@ if [[ -z $TEST_EMBEDDED_PYTHON_SCRIPTS ]]; then
fi
#exec ipynb's py file
for file in */{README,README\.en}.ipynb ; do
for file in */{README,README\.cn}.ipynb ; do
pushd $PWD > /dev/null
cd $(dirname $file) > /dev/null
......
......@@ -4,6 +4,6 @@ set -xe
cd /book
#convert md to ipynb
for file in */{README,README\.en}.md ; do
for file in */{README,README\.cn}.md ; do
notedown $file > ${file%.*}.ipynb
done
......@@ -45,7 +45,7 @@ YouTube是世界上最大的视频上传、分享和发现网站,YouTube推荐
候选生成网络将推荐问题建模为一个类别数极大的多类分类问题:对于一个Youtube用户,使用其观看历史(视频ID)、搜索词记录(search tokens)、人口学信息(如地理位置、用户登录设备)、二值特征(如性别,是否登录)和连续特征(如用户年龄)等,对视频库中所有视频进行多分类,得到每一类别的分类结果(即每一个视频的推荐概率),最终输出概率较高的几百个视频。
首先,将观看历史及搜索词记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的推荐效果,并将二值特征和连续特征归一化处理到[0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见[识别数字](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.md)教程)处理。最后,训练时将MLP的输出给softmax做分类,预测时计算用户的综合特征(MLP的输出)与所有视频的相似度,取得分最高的$k$个作为候选生成网络的筛选结果。图2显示了候选生成网络结构。
首先,将观看历史及搜索词记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的推荐效果,并将二值特征和连续特征归一化处理到[0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见[识别数字](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md)教程)处理。最后,训练时将MLP的输出给softmax做分类,预测时计算用户的综合特征(MLP的输出)与所有视频的相似度,取得分最高的$k$个作为候选生成网络的筛选结果。图2显示了候选生成网络结构。
<p align="center">
<img src="image/Deep_candidate_generation_model_architecture.png" width="70%" ><br/>
......
......@@ -87,7 +87,7 @@ YouTube是世界上最大的视频上传、分享和发现网站,YouTube推荐
候选生成网络将推荐问题建模为一个类别数极大的多类分类问题:对于一个Youtube用户,使用其观看历史(视频ID)、搜索词记录(search tokens)、人口学信息(如地理位置、用户登录设备)、二值特征(如性别,是否登录)和连续特征(如用户年龄)等,对视频库中所有视频进行多分类,得到每一类别的分类结果(即每一个视频的推荐概率),最终输出概率较高的几百个视频。
首先,将观看历史及搜索词记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的推荐效果,并将二值特征和连续特征归一化处理到[0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见[识别数字](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.md)教程)处理。最后,训练时将MLP的输出给softmax做分类,预测时计算用户的综合特征(MLP的输出)与所有视频的相似度,取得分最高的$k$个作为候选生成网络的筛选结果。图2显示了候选生成网络结构。
首先,将观看历史及搜索词记录这类历史信息,映射为向量后取平均值得到定长表示;同时,输入人口学特征以优化新用户的推荐效果,并将二值特征和连续特征归一化处理到[0, 1]范围。接下来,将所有特征表示拼接为一个向量,并输入给非线形多层感知器(MLP,详见[识别数字](https://github.com/PaddlePaddle/book/blob/develop/02.recognize_digits/README.cn.md)教程)处理。最后,训练时将MLP的输出给softmax做分类,预测时计算用户的综合特征(MLP的输出)与所有视频的相似度,取得分最高的$k$个作为候选生成网络的筛选结果。图2显示了候选生成网络结构。
<p align="center">
<img src="image/Deep_candidate_generation_model_architecture.png" width="70%" ><br/>
......
......@@ -68,7 +68,7 @@ $$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mb
图4. 基于LSTM的双向循环神经网络结构示意图
</p>
需要说明的是,这种双向RNN结构和Bengio等人在机器翻译任务中使用的双向RNN结构\[[3](#参考文献), [4](#参考文献)\] 并不相同,我们会在后续[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.md)任务中,介绍另一种双向循环神经网络。
需要说明的是,这种双向RNN结构和Bengio等人在机器翻译任务中使用的双向RNN结构\[[3](#参考文献), [4](#参考文献)\] 并不相同,我们会在后续[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.cn.md)任务中,介绍另一种双向循环神经网络。
### 条件随机场 (Conditional Random Field)
......@@ -182,7 +182,7 @@ conll05st-release/
| predicate_dict | 谓词的词典,共计3162个词 |
| emb | 一个训练好的词表,32维 |
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
获取词典,打印词典大小:
......
......@@ -87,7 +87,7 @@ To address, we can design a bidirectional recurrent neural network by making a m
Fig 4. Bidirectional LSTMs
</p>
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.en.md)
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md)
### Conditional Random Field (CRF)
......@@ -118,7 +118,7 @@ where $\omega$ are the weights to the feature function that the CRF learns. Whil
$$\DeclareMathOperator*{\argmax}{arg\,max} L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/07.machine_translation/README.en.md#Beam%20Search%20Algorithm)).
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md#beam-search-algorithm)).
### Deep Bidirectional LSTM (DB-LSTM) SRL model
......
......@@ -110,7 +110,7 @@ $$\mbox{[小明]}_{\mbox{Agent}}\mbox{[昨天]}_{\mbox{Time}}\mbox{[晚上]}_\mb
图4. 基于LSTM的双向循环神经网络结构示意图
</p>
需要说明的是,这种双向RNN结构和Bengio等人在机器翻译任务中使用的双向RNN结构\[[3](#参考文献), [4](#参考文献)\] 并不相同,我们会在后续[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.md)任务中,介绍另一种双向循环神经网络。
需要说明的是,这种双向RNN结构和Bengio等人在机器翻译任务中使用的双向RNN结构\[[3](#参考文献), [4](#参考文献)\] 并不相同,我们会在后续[机器翻译](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.cn.md)任务中,介绍另一种双向循环神经网络。
### 条件随机场 (Conditional Random Field)
......@@ -224,7 +224,7 @@ conll05st-release/
| predicate_dict | 谓词的词典,共计3162个词 |
| emb | 一个训练好的词表,32维 |
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
我们在英文维基百科上训练语言模型得到了一份词向量用来初始化SRL模型。在SRL模型训练过程中,词向量不再被更新。关于语言模型和词向量可以参考[词向量](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.cn.md) 这篇教程。我们训练语言模型的语料共有995,000,000个token,词典大小控制为4900,000词。CoNLL 2005训练语料中有5%的词不在这4900,000个词中,我们将它们全部看作未登录词,用`<unk>`表示。
获取词典,打印词典大小:
......
......@@ -129,7 +129,7 @@ To address, we can design a bidirectional recurrent neural network by making a m
Fig 4. Bidirectional LSTMs
</p>
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.en.md)
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md)
### Conditional Random Field (CRF)
......@@ -160,7 +160,7 @@ where $\omega$ are the weights to the feature function that the CRF learns. Whil
$$\DeclareMathOperator*{\argmax}{arg\,max} L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/07.machine_translation/README.en.md#Beam%20Search%20Algorithm)).
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md#beam-search-algorithm)).
### Deep Bidirectional LSTM (DB-LSTM) SRL model
......
......@@ -39,7 +39,7 @@
### GRU
我们已经在[情感分析](https://github.com/PaddlePaddle/book/blob/develop/understand_sentiment/README.md)一章中介绍了循环神经网络(RNN)及长短时间记忆网络(LSTM)。相比于简单的RNN,LSTM增加了记忆单元(memory cell)、输入门(input gate)、遗忘门(forget gate)及输出门(output gate),这些门及记忆单元组合起来大大提升了RNN处理远距离依赖问题的能力。
我们已经在[情感分析](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)一章中介绍了循环神经网络(RNN)及长短时间记忆网络(LSTM)。相比于简单的RNN,LSTM增加了记忆单元(memory cell)、输入门(input gate)、遗忘门(forget gate)及输出门(output gate),这些门及记忆单元组合起来大大提升了RNN处理远距离依赖问题的能力。
GRU\[[2](#参考文献)\]是Cho等人在LSTM上提出的简化版本,也是RNN的一种扩展,如下图所示。GRU单元只有两个门:
- 重置门(reset gate):如果重置门关闭,会忽略掉历史信息,即历史不相干的信息不会影响未来的输出。
......@@ -53,7 +53,7 @@ GRU\[[2](#参考文献)\]是Cho等人在LSTM上提出的简化版本,也是RNN
### 双向循环神经网络
我们已经在[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/label_semantic_roles/README.md)一章中介绍了一种双向循环神经网络,这里介绍Bengio团队在论文\[[2](#参考文献),[4](#参考文献)\]中提出的另一种结构。该结构的目的是输入一个序列,得到其在每个时刻的特征表示,即输出的每个时刻都用定长向量表示到该时刻的上下文语义信息。
我们已经在[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一章中介绍了一种双向循环神经网络,这里介绍Bengio团队在论文\[[2](#参考文献),[4](#参考文献)\]中提出的另一种结构。该结构的目的是输入一个序列,得到其在每个时刻的特征表示,即输出的每个时刻都用定长向量表示到该时刻的上下文语义信息。
具体来说,该双向循环神经网络分别在时间维以顺序和逆序——即前向(forward)和后向(backward)——依次处理输入序列,并将每个时间步RNN的输出拼接成为最终的输出层。这样每个时间步的输出节点,都包含了输入序列中当前时刻完整的过去和未来的上下文信息。下图展示的是一个按时间步展开的双向循环神经网络。该网络包含一个前向和一个后向RNN,其中有六个权重矩阵:输入到前向隐层和后向隐层的权重矩阵($W_1, W_3$),隐层到隐层自己的权重矩阵($W_2,W_5$),前向隐层和后向隐层到输出层的权重矩阵($W_4, W_6$)。注意,该网络的前向隐层和后向隐层之间没有连接。
......
......@@ -81,7 +81,7 @@
### GRU
我们已经在[情感分析](https://github.com/PaddlePaddle/book/blob/develop/understand_sentiment/README.md)一章中介绍了循环神经网络(RNN)及长短时间记忆网络(LSTM)。相比于简单的RNN,LSTM增加了记忆单元(memory cell)、输入门(input gate)、遗忘门(forget gate)及输出门(output gate),这些门及记忆单元组合起来大大提升了RNN处理远距离依赖问题的能力。
我们已经在[情感分析](https://github.com/PaddlePaddle/book/blob/develop/06.understand_sentiment/README.cn.md)一章中介绍了循环神经网络(RNN)及长短时间记忆网络(LSTM)。相比于简单的RNN,LSTM增加了记忆单元(memory cell)、输入门(input gate)、遗忘门(forget gate)及输出门(output gate),这些门及记忆单元组合起来大大提升了RNN处理远距离依赖问题的能力。
GRU\[[2](#参考文献)\]是Cho等人在LSTM上提出的简化版本,也是RNN的一种扩展,如下图所示。GRU单元只有两个门:
- 重置门(reset gate):如果重置门关闭,会忽略掉历史信息,即历史不相干的信息不会影响未来的输出。
......@@ -95,7 +95,7 @@ GRU\[[2](#参考文献)\]是Cho等人在LSTM上提出的简化版本,也是RNN
### 双向循环神经网络
我们已经在[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/label_semantic_roles/README.md)一章中介绍了一种双向循环神经网络,这里介绍Bengio团队在论文\[[2](#参考文献),[4](#参考文献)\]中提出的另一种结构。该结构的目的是输入一个序列,得到其在每个时刻的特征表示,即输出的每个时刻都用定长向量表示到该时刻的上下文语义信息。
我们已经在[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一章中介绍了一种双向循环神经网络,这里介绍Bengio团队在论文\[[2](#参考文献),[4](#参考文献)\]中提出的另一种结构。该结构的目的是输入一个序列,得到其在每个时刻的特征表示,即输出的每个时刻都用定长向量表示到该时刻的上下文语义信息。
具体来说,该双向循环神经网络分别在时间维以顺序和逆序——即前向(forward)和后向(backward)——依次处理输入序列,并将每个时间步RNN的输出拼接成为最终的输出层。这样每个时间步的输出节点,都包含了输入序列中当前时刻完整的过去和未来的上下文信息。下图展示的是一个按时间步展开的双向循环神经网络。该网络包含一个前向和一个后向RNN,其中有六个权重矩阵:输入到前向隐层和后向隐层的权重矩阵($W_1, W_3$),隐层到隐层自己的权重矩阵($W_2,W_5$),前向隐层和后向隐层到输出层的权重矩阵($W_4, W_6$)。注意,该网络的前向隐层和后向隐层之间没有连接。
......
......@@ -64,7 +64,7 @@ paddle.init(use_gpu=True, trainer_count=1)
为了写作、运行、调试,您需要安装Python 2.x和Go >1.5, 并可以用[脚本程序](https://github.com/PaddlePaddle/book/blob/develop/.tools/convert-markdown-into-ipynb-and-test.sh)来生成新的Docker image。
**Note:** We also provide [English Readme](https://github.com/PaddlePaddle/book/blob/develop/README.en.md) for PaddlePaddle book.
**Note:** We also provide [English Readme](https://github.com/PaddlePaddle/book/blob/develop/README.md) for PaddlePaddle book.
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">本教程</span><a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a> 创作,采用 <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">知识共享 署名-相同方式共享 4.0 国际 许可协议</a>进行许可。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册