train.py 12.4 KB
Newer Older
N
Nicky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
N
Nicky 已提交
16 17
import math
import sys
u010070587's avatar
u010070587 已提交
18
import argparse
N
Nicky 已提交
19 20 21 22 23 24 25 26
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets

IS_SPARSE = True
BATCH_SIZE = 256
u010070587's avatar
u010070587 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40


def parse_args():
    parser = argparse.ArgumentParser("recommender_system")
    parser.add_argument(
        '--enable_ce',
        action='store_true',
        help="If set, run the task with continuous evaluation logs.")
    parser.add_argument(
        '--use_gpu', type=int, default=0, help="Whether to use GPU or not.")
    parser.add_argument(
        '--num_epochs', type=int, default=1, help="number of epochs.")
    args = parser.parse_args()
    return args
Y
Yu Yang 已提交
41

H
Helin Wang 已提交
42

Q
qijun 已提交
43
def get_usr_combined_features():
N
Nicky 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
97
    return usr_combined_features
Y
Yu Yang 已提交
98

Q
qijun 已提交
99

Q
qijun 已提交
100
def get_mov_combined_features():
N
Nicky 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
146
    return mov_combined_features
Q
qijun 已提交
147

Y
Yu Yang 已提交
148

N
Nicky 已提交
149
def inference_program():
Q
qijun 已提交
150 151
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
152

N
Nicky 已提交
153 154
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
    scale_infer = layers.scale(x=inference, scale=5.0)
Y
Yu Yang 已提交
155

N
Nicky 已提交
156 157 158
    label = layers.data(name='score', shape=[1], dtype='float32')
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
    avg_cost = layers.mean(square_cost)
Y
Yu Yang 已提交
159

160
    return scale_infer, avg_cost
N
Nicky 已提交
161 162 163 164 165 166


def optimizer_func():
    return fluid.optimizer.SGD(learning_rate=0.2)


167
def train(use_cuda, params_dirname):
N
Nicky 已提交
168 169
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

u010070587's avatar
u010070587 已提交
170 171 172 173 174 175 176 177 178 179 180 181
    if args.enable_ce:
        train_reader = paddle.batch(
            paddle.dataset.movielens.train(), batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
    else:
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.movielens.train(), buf_size=8192),
            batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
N
Nicky 已提交
182 183 184 185 186 187

    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]

188 189
    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()
u010070587's avatar
u010070587 已提交
190 191 192 193
    if args.enable_ce:
        main_program.random_seed = 90
        star_program.random_seed = 90

194 195 196 197 198 199 200 201 202 203 204 205 206 207
    scale_infer, avg_cost = inference_program()

    test_program = main_program.clone(for_test=True)
    sgd_optimizer = optimizer_func()
    sgd_optimizer.minimize(avg_cost)
    exe = fluid.Executor(place)

    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
208
        accumulated = 0
209 210 211 212
        for test_data in reader():
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
213 214
                fetch_list=[avg_cost])
            accumulated += avg_cost_np[0]
215
            count += 1
216
        return accumulated / count
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

    def train_loop():
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)
        exe.run(star_program)

        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(
                    program=main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost])
                out = np.array(outs[0])

                # get test avg_cost
235
                test_avg_cost = train_test(test_program, test_reader)
236

237 238
                # if test_avg_cost < 4.0: # Change this number to adjust accuracy
                if batch_id == 20:
u010070587's avatar
u010070587 已提交
239 240 241 242

                    if args.enable_ce:
                        print("kpis\ttest_cost\t%f" % float(test_avg_cost))

243 244 245 246 247 248
                    if params_dirname is not None:
                        fluid.io.save_inference_model(params_dirname, [
                            "user_id", "gender_id", "age_id", "job_id",
                            "movie_id", "category_id", "movie_title"
                        ], [scale_infer], exe)
                    return
249 250
                print('EpochID {0}, BatchID {1}, Test Loss {2:0.2}'.format(
                    pass_id + 1, batch_id + 1, float(test_avg_cost)))
251 252

                if math.isnan(float(out[0])):
N
Nicky 已提交
253 254
                    sys.exit("got NaN loss, training failed.")

255
    train_loop()
N
Nicky 已提交
256 257


258
def infer(use_cuda, params_dirname):
N
Nicky 已提交
259 260 261 262 263 264 265 266 267 268
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    # Use the first data from paddle.dataset.movielens.test() as input.
    # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
    # where `data` is a list of sequences of index numbers, `lod` is
    # the level of detail (lod) info associated with `data`.
    # For example, data = [[10, 2, 3], [2, 3]] means that it contains
    # two sequences of indexes, of length 3 and 2, respectively.
    # Correspondingly, lod = [[3, 2]] contains one level of detail info,
    # indicating that `data` consists of two sequences of length 3 and 2.
J
JiabinYang 已提交
269 270 271
    infer_movie_id = 783
    infer_movie_name = paddle.dataset.movielens.movie_info()[
        infer_movie_id].title
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()

    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inferencer, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
        # (lod) info associated with `data`.
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
P
peizhilin 已提交
296
        user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
297 298

        assert feed_target_names[1] == "gender_id"
P
peizhilin 已提交
299
        gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
300 301

        assert feed_target_names[2] == "age_id"
P
peizhilin 已提交
302
        age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
303 304

        assert feed_target_names[3] == "job_id"
P
peizhilin 已提交
305
        job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
306 307

        assert feed_target_names[4] == "movie_id"
P
peizhilin 已提交
308
        movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
309 310

        assert feed_target_names[5] == "category_id"
P
peizhilin 已提交
311 312
        category_id = fluid.create_lod_tensor(
            [np.array([10, 8, 9], dtype='int64')], [[3]], place)
313 314

        assert feed_target_names[6] == "movie_title"
P
peizhilin 已提交
315
        movie_title = fluid.create_lod_tensor(
P
peizhilin 已提交
316 317
            [np.array([1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
            place)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(
            inferencer,
            feed={
                feed_target_names[0]: user_id,
                feed_target_names[1]: gender_id,
                feed_target_names[2]: age_id,
                feed_target_names[3]: job_id,
                feed_target_names[4]: movie_id,
                feed_target_names[5]: category_id,
                feed_target_names[6]: movie_title
            },
            fetch_list=fetch_targets,
            return_numpy=False)
        predict_rating = np.array(results[0])
        print("Predict Rating of user id 1 on movie \"" + infer_movie_name +
              "\" is " + str(predict_rating[0][0]))
        print("Actual Rating of user id 1 on movie \"" + infer_movie_name +
              "\" is 4.")
N
Nicky 已提交
339 340 341 342 343 344


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "recommender_system.inference.model"
345 346
    train(use_cuda=use_cuda, params_dirname=params_dirname)
    infer(use_cuda=use_cuda, params_dirname=params_dirname)
Y
Yu Yang 已提交
347 348 349


if __name__ == '__main__':
u010070587's avatar
u010070587 已提交
350 351 352 353
    args = parse_args()
    PASS_NUM = args.num_epochs
    use_cuda = args.use_gpu
    main(use_cuda)