train.py 11.5 KB
Newer Older
N
Nicky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
N
Nicky 已提交
16 17 18 19 20 21 22 23 24 25 26
import math
import sys
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets

IS_SPARSE = True
USE_GPU = False
BATCH_SIZE = 256
27
PASS_NUM = 100
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29

Q
qijun 已提交
30
def get_usr_combined_features():
N
Nicky 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
84
    return usr_combined_features
Y
Yu Yang 已提交
85

Q
qijun 已提交
86

Q
qijun 已提交
87
def get_mov_combined_features():
N
Nicky 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
133
    return mov_combined_features
Q
qijun 已提交
134

Y
Yu Yang 已提交
135

N
Nicky 已提交
136
def inference_program():
Q
qijun 已提交
137 138
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
139

N
Nicky 已提交
140 141
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
    scale_infer = layers.scale(x=inference, scale=5.0)
Y
Yu Yang 已提交
142

N
Nicky 已提交
143 144 145
    label = layers.data(name='score', shape=[1], dtype='float32')
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
    avg_cost = layers.mean(square_cost)
Y
Yu Yang 已提交
146

147
    return scale_infer, avg_cost
N
Nicky 已提交
148 149 150 151 152 153


def optimizer_func():
    return fluid.optimizer.SGD(learning_rate=0.2)


154
def train(use_cuda, params_dirname):
N
Nicky 已提交
155 156
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

157 158 159 160 161
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
N
Nicky 已提交
162 163 164 165 166 167

    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()
    scale_infer, avg_cost = inference_program()

    test_program = main_program.clone(for_test=True)
    sgd_optimizer = optimizer_func()
    sgd_optimizer.minimize(avg_cost)
    exe = fluid.Executor(place)

    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
        accumulated = len([avg_cost, scale_infer]) * [0]
        for test_data in reader():
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
                fetch_list=[avg_cost, scale_infer])
            accumulated = [
                x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)
            ]
            count += 1
        return [x / count for x in accumulated]

    def train_loop():
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)
        exe.run(star_program)

        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch
                outs = exe.run(
                    program=main_program,
                    feed=feeder.feed(data),
                    fetch_list=[avg_cost])
                out = np.array(outs[0])

                avg_cost_set = train_test(test_program, test_reader)

                # get test avg_cost
                test_avg_cost = np.array(avg_cost_set).mean()
                print("avg_cost: %s" % test_avg_cost)

                if test_avg_cost < 4.0:  # Change this number to adjust accuracy
                    #if batch_id == 20:
                    if params_dirname is not None:
                        fluid.io.save_inference_model(params_dirname, [
                            "user_id", "gender_id", "age_id", "job_id",
                            "movie_id", "category_id", "movie_title"
                        ], [scale_infer], exe)
                    return
                else:
                    print('BatchID {0}, Test Loss {1:0.2}'.format(
                        pass_id + 1, float(test_avg_cost)))

                if math.isnan(float(out[0])):
N
Nicky 已提交
231 232
                    sys.exit("got NaN loss, training failed.")

233
    train_loop()
N
Nicky 已提交
234 235


236
def infer(use_cuda, params_dirname):
N
Nicky 已提交
237 238 239 240 241 242 243 244 245 246
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    # Use the first data from paddle.dataset.movielens.test() as input.
    # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
    # where `data` is a list of sequences of index numbers, `lod` is
    # the level of detail (lod) info associated with `data`.
    # For example, data = [[10, 2, 3], [2, 3]] means that it contains
    # two sequences of indexes, of length 3 and 2, respectively.
    # Correspondingly, lod = [[3, 2]] contains one level of detail info,
    # indicating that `data` consists of two sequences of length 3 and 2.
J
JiabinYang 已提交
247 248 249
    infer_movie_id = 783
    infer_movie_name = paddle.dataset.movielens.movie_info()[
        infer_movie_id].title
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()

    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inferencer, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # Use the first data from paddle.dataset.movielens.test() as input
        assert feed_target_names[0] == "user_id"
        # Use create_lod_tensor(data, recursive_sequence_lengths, place) API
        # to generate LoD Tensor where `data` is a list of sequences of index
        # numbers, `recursive_sequence_lengths` is the length-based level of detail
        # (lod) info associated with `data`.
        # For example, data = [[10, 2, 3], [2, 3]] means that it contains
        # two sequences of indexes, of length 3 and 2, respectively.
        # Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
        # level of detail info, indicating that `data` consists of two sequences
        # of length 3 and 2, respectively.
        user_id = fluid.create_lod_tensor([[1]], [[1]], place)

        assert feed_target_names[1] == "gender_id"
        gender_id = fluid.create_lod_tensor([[1]], [[1]], place)

        assert feed_target_names[2] == "age_id"
        age_id = fluid.create_lod_tensor([[0]], [[1]], place)

        assert feed_target_names[3] == "job_id"
        job_id = fluid.create_lod_tensor([[10]], [[1]], place)

        assert feed_target_names[4] == "movie_id"
        movie_id = fluid.create_lod_tensor([[783]], [[1]], place)

        assert feed_target_names[5] == "category_id"
        category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)

        assert feed_target_names[6] == "movie_title"
        movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]],
                                              [[5]], place)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(
            inferencer,
            feed={
                feed_target_names[0]: user_id,
                feed_target_names[1]: gender_id,
                feed_target_names[2]: age_id,
                feed_target_names[3]: job_id,
                feed_target_names[4]: movie_id,
                feed_target_names[5]: category_id,
                feed_target_names[6]: movie_title
            },
            fetch_list=fetch_targets,
            return_numpy=False)
        predict_rating = np.array(results[0])
        print("Predict Rating of user id 1 on movie \"" + infer_movie_name +
              "\" is " + str(predict_rating[0][0]))
        print("Actual Rating of user id 1 on movie \"" + infer_movie_name +
              "\" is 4.")
N
Nicky 已提交
315 316 317 318 319 320


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "recommender_system.inference.model"
321 322
    train(use_cuda=use_cuda, params_dirname=params_dirname)
    infer(use_cuda=use_cuda, params_dirname=params_dirname)
Y
Yu Yang 已提交
323 324 325


if __name__ == '__main__':
N
Nicky 已提交
326
    main(USE_GPU)