train.py 4.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import paddle.v2 as paddle
import cPickle
import copy
D
dzhwinter 已提交
4
import os
Y
Yu Yang 已提交
5

D
dzhwinter 已提交
6
with_gpu = os.getenv('WITH_GPU', '0') != '0'
Y
Yu Yang 已提交
7

Q
qijun 已提交
8
def get_usr_combined_features():
Y
Yu Yang 已提交
9 10 11 12 13
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_user_id() + 1))
    usr_emb = paddle.layer.embedding(input=uid, size=32)
L
livc 已提交
14
    usr_fc = paddle.layer.fc(input=usr_emb, size=32)
Y
Yu Yang 已提交
15 16 17 18

    usr_gender_id = paddle.layer.data(
        name='gender_id', type=paddle.data_type.integer_value(2))
    usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
L
livc 已提交
19
    usr_gender_fc = paddle.layer.fc(input=usr_gender_emb, size=16)
Y
Yu Yang 已提交
20 21 22 23 24 25

    usr_age_id = paddle.layer.data(
        name='age_id',
        type=paddle.data_type.integer_value(
            len(paddle.dataset.movielens.age_table)))
    usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
L
livc 已提交
26
    usr_age_fc = paddle.layer.fc(input=usr_age_emb, size=16)
Y
Yu Yang 已提交
27 28 29 30 31 32

    usr_job_id = paddle.layer.data(
        name='job_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_job_id() + 1))
    usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
L
livc 已提交
33
    usr_job_fc = paddle.layer.fc(input=usr_job_emb, size=16)
Y
Yu Yang 已提交
34 35

    usr_combined_features = paddle.layer.fc(
L
livc 已提交
36
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc],
Y
Yu Yang 已提交
37 38
        size=200,
        act=paddle.activation.Tanh())
Q
qijun 已提交
39
    return usr_combined_features
Y
Yu Yang 已提交
40

Q
qijun 已提交
41

Q
qijun 已提交
42 43
def get_mov_combined_features():
    movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
Y
Yu Yang 已提交
44 45 46 47 48
    mov_id = paddle.layer.data(
        name='movie_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_movie_id() + 1))
    mov_emb = paddle.layer.embedding(input=mov_id, size=32)
L
livc 已提交
49
    mov_fc = paddle.layer.fc(input=mov_emb, size=32)
Y
Yu Yang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    mov_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.sparse_binary_vector(
            len(paddle.dataset.movielens.movie_categories())))
    mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

    mov_title_id = paddle.layer.data(
        name='movie_title',
        type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
    mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
    mov_title_conv = paddle.networks.sequence_conv_pool(
        input=mov_title_emb, hidden_size=32, context_len=3)

    mov_combined_features = paddle.layer.fc(
L
livc 已提交
65
        input=[mov_fc, mov_categories_hidden, mov_title_conv],
Y
Yu Yang 已提交
66 67
        size=200,
        act=paddle.activation.Tanh())
Q
qijun 已提交
68
    return mov_combined_features
Q
qijun 已提交
69

Y
Yu Yang 已提交
70

Q
qijun 已提交
71
def main():
D
dzhwinter 已提交
72
    paddle.init(use_gpu=with_gpu)
Q
qijun 已提交
73 74
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
75 76
    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
77
    cost = paddle.layer.square_error_cost(
Y
Yu Yang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        input=inference,
        label=paddle.layer.data(
            name='score', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.movielens.train(), buf_size=8192),
            batch_size=256),
        event_handler=event_handler,
        feeding=feeding,
        num_passes=1)

    user_id = 234
    movie_id = 345

    user = paddle.dataset.movielens.user_info()[user_id]
    movie = paddle.dataset.movielens.movie_info()[movie_id]

    feature = user.value() + movie.value()

    infer_dict = copy.copy(feeding)
    del infer_dict['score']

    prediction = paddle.infer(
        output_layer=inference,
        parameters=parameters,
        input=[feature],
        feeding=infer_dict)
    print(prediction + 5) / 2


if __name__ == '__main__':
    main()