train.py 8.7 KB
Newer Older
N
Nicky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
N
Nicky 已提交
16 17 18 19 20 21 22
import math
import sys
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31
try:
    from paddle.fluid.contrib.trainer import *
    from paddle.fluid.contrib.inferencer import *
except ImportError:
    print(
        "In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib",
        file=sys.stderr)
    from paddle.fluid.trainer import *
    from paddle.fluid.inferencer import *
N
Nicky 已提交
32 33 34 35

IS_SPARSE = True
USE_GPU = False
BATCH_SIZE = 256
Y
Yu Yang 已提交
36

H
Helin Wang 已提交
37

Q
qijun 已提交
38
def get_usr_combined_features():
N
Nicky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
92
    return usr_combined_features
Y
Yu Yang 已提交
93

Q
qijun 已提交
94

Q
qijun 已提交
95
def get_mov_combined_features():
N
Nicky 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
141
    return mov_combined_features
Q
qijun 已提交
142

Y
Yu Yang 已提交
143

N
Nicky 已提交
144
def inference_program():
Q
qijun 已提交
145 146
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
147

N
Nicky 已提交
148 149
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
    scale_infer = layers.scale(x=inference, scale=5.0)
Y
Yu Yang 已提交
150

N
Nicky 已提交
151
    return scale_infer
Y
Yu Yang 已提交
152 153


N
Nicky 已提交
154
def train_program():
Y
Yu Yang 已提交
155

N
Nicky 已提交
156
    scale_infer = inference_program()
Y
Yu Yang 已提交
157

N
Nicky 已提交
158 159 160
    label = layers.data(name='score', shape=[1], dtype='float32')
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
    avg_cost = layers.mean(square_cost)
Y
Yu Yang 已提交
161

N
Nicky 已提交
162 163 164 165 166 167 168 169 170 171
    return [avg_cost, scale_infer]


def optimizer_func():
    return fluid.optimizer.SGD(learning_rate=0.2)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

Y
yuyang 已提交
172
    trainer = Trainer(
N
Nicky 已提交
173 174 175 176 177 178 179 180
        train_func=train_program, place=place, optimizer_func=optimizer_func)

    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]

    def event_handler(event):
Y
yuyang 已提交
181
        if isinstance(event, EndStepEvent):
N
Nicky 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            test_reader = paddle.batch(
                paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
            avg_cost_set = trainer.test(
                reader=test_reader, feed_order=feed_order)

            # get avg cost
            avg_cost = np.array(avg_cost_set).mean()

            print("avg_cost: %s" % avg_cost)

            if float(avg_cost) < 4:  # Change this number to adjust accuracy
                trainer.save_params(params_dirname)
                trainer.stop()
            else:
                print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
                                                              float(avg_cost)))
                if math.isnan(float(avg_cost)):
                    sys.exit("got NaN loss, training failed.")

    train_reader = paddle.batch(
202
        paddle.reader.shuffle(paddle.dataset.movielens.train(), buf_size=8192),
N
Nicky 已提交
203 204 205 206 207 208 209 210 211 212 213
        batch_size=BATCH_SIZE)

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
        feed_order=feed_order)


def infer(use_cuda, inference_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
yuyang 已提交
214
    inferencer = Inferencer(
N
Nicky 已提交
215 216 217 218 219 220 221 222 223 224
        inference_program, param_path=params_dirname, place=place)

    # Use the first data from paddle.dataset.movielens.test() as input.
    # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
    # where `data` is a list of sequences of index numbers, `lod` is
    # the level of detail (lod) info associated with `data`.
    # For example, data = [[10, 2, 3], [2, 3]] means that it contains
    # two sequences of indexes, of length 3 and 2, respectively.
    # Correspondingly, lod = [[3, 2]] contains one level of detail info,
    # indicating that `data` consists of two sequences of length 3 and 2.
J
JiabinYang 已提交
225 226 227
    infer_movie_id = 783
    infer_movie_name = paddle.dataset.movielens.movie_info()[
        infer_movie_id].title
N
Nicky 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    user_id = fluid.create_lod_tensor([[1]], [[1]], place)
    gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
    age_id = fluid.create_lod_tensor([[0]], [[1]], place)
    job_id = fluid.create_lod_tensor([[10]], [[1]], place)
    movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
    category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
    movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]],
                                          place)

    results = inferencer.infer(
        {
            'user_id': user_id,
            'gender_id': gender_id,
            'age_id': age_id,
            'job_id': job_id,
            'movie_id': movie_id,
            'category_id': category_id,
            'movie_title': movie_title
        },
        return_numpy=False)

249 250 251 252 253
    predict_rating = np.array(results[0])
    print("Predict Rating of user id 1 on movie \"" + infer_movie_name +
          "\" is " + str(predict_rating[0][0]))
    print("Actual Rating of user id 1 on movie \"" + infer_movie_name +
          "\" is 4.")
N
Nicky 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "recommender_system.inference.model"
    train(
        use_cuda=use_cuda,
        train_program=train_program,
        params_dirname=params_dirname)
    infer(
        use_cuda=use_cuda,
        inference_program=inference_program,
        params_dirname=params_dirname)
Y
Yu Yang 已提交
268 269 270


if __name__ == '__main__':
N
Nicky 已提交
271
    main(USE_GPU)