train_dyn_rnn.py 8.5 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
import numpy as np
Y
Yu Yang 已提交
20
import sys
21
import math
u010070587's avatar
u010070587 已提交
22
import argparse
S
sidgoyal78 已提交
23 24 25 26 27 28 29

CLASS_DIM = 2
EMB_DIM = 128
BATCH_SIZE = 128
LSTM_SIZE = 128


u010070587's avatar
u010070587 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
def parse_args():
    parser = argparse.ArgumentParser("dyn_rnn")
    parser.add_argument(
        '--enable_ce',
        action='store_true',
        help="If set, run the task with continuous evaluation logs.")
    parser.add_argument(
        '--use_gpu', type=int, default=0, help="Whether to use GPU or not.")
    parser.add_argument(
        '--num_epochs', type=int, default=1, help="number of epochs.")
    args = parser.parse_args()
    return args


S
sidgoyal78 已提交
44 45 46
def dynamic_rnn_lstm(data, input_dim, class_dim, emb_dim, lstm_size):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
47 48 49 50 51
    sentence = fluid.layers.fc(input=emb, size=lstm_size * 4, act='tanh')

    lstm, _ = fluid.layers.dynamic_lstm(sentence, size=lstm_size * 4)

    last = fluid.layers.sequence_last_step(lstm)
S
sidgoyal78 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    pred = dynamic_rnn_lstm(data, dict_dim, CLASS_DIM, EMB_DIM, LSTM_SIZE)
    return pred


65
def train_program(prediction):
S
sidgoyal78 已提交
66 67 68 69 70 71 72 73 74 75 76
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


77
def train(use_cuda, params_dirname):
S
sidgoyal78 已提交
78
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
79
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
80
    word_dict = paddle.dataset.imdb.word_dict()
81 82

    print("Reading training data....")
u010070587's avatar
u010070587 已提交
83 84 85 86 87 88 89 90
    if args.enable_ce:
        train_reader = paddle.batch(
            paddle.dataset.imdb.train(word_dict), batch_size=BATCH_SIZE)
    else:
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.imdb.train(word_dict), buf_size=25000),
            batch_size=BATCH_SIZE)
91 92 93 94 95 96

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

    feed_order = ['words', 'label']
u010070587's avatar
u010070587 已提交
97
    pass_num = args.num_epochs
98

99 100
    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()
u010070587's avatar
u010070587 已提交
101 102 103 104 105

    if args.enable_ce:
        main_program.random_seed = 90
        star_program.random_seed = 90

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    prediction = inference_program(word_dict)
    train_func_outputs = train_program(prediction)
    avg_cost = train_func_outputs[0]

    test_program = main_program.clone(for_test=True)

    sgd_optimizer = optimizer_func()
    sgd_optimizer.minimize(avg_cost)
    exe = fluid.Executor(place)

    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
        accumulated = len(train_func_outputs) * [0]
        for test_data in reader():
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
                fetch_list=train_func_outputs)
            accumulated = [
                x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)
            ]
            count += 1
        return [x / count for x in accumulated]

    def train_loop():

        feed_var_list_loop = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=place)
        exe.run(fluid.default_startup_program())

        for epoch_id in range(pass_num):
            for step_id, data in enumerate(train_reader()):
                metrics = exe.run(
                    main_program,
                    feed=feeder.feed(data),
                    fetch_list=[var.name for var in train_func_outputs])
                if (step_id + 1) % 10 == 0:

u010070587's avatar
u010070587 已提交
151 152 153 154
                    avg_cost_test, acc_test = train_test(test_program,
                                                         test_reader)
                    print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                        step_id, avg_cost_test, acc_test))
155 156 157 158 159 160 161 162

                    print("Step {0}, Epoch {1} Metrics {2}".format(
                        step_id, epoch_id, list(map(np.array, metrics))))
                if math.isnan(float(metrics[0])):
                    sys.exit("got NaN loss, training failed.")
            if params_dirname is not None:
                fluid.io.save_inference_model(params_dirname, ["words"],
                                              prediction, exe)
u010070587's avatar
u010070587 已提交
163 164 165 166 167
            if args.enable_ce and epoch_id == pass_num - 1:
                print("kpis\trnn_train_cost\t%f" % metrics[0])
                print("kpis\trnn_train_acc\t%f" % metrics[1])
                print("kpis\trnn_test_cost\t%f" % avg_cost_test)
                print("kpis\trnn_test_acc\t%f" % acc_test)
168 169 170 171 172

    train_loop()


def infer(use_cuda, params_dirname=None):
S
sidgoyal78 已提交
173 174 175
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inferencer, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # Setup input by creating LoDTensor to represent sequence of words.
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
        # look up for the corresponding word vector.
        # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
        # which has only one lod level. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
        # Note that lod info should be a list of lists.
        reviews_str = [
            'read the book forget the movie', 'this is a great movie',
            'this is very bad'
        ]
        reviews = [c.split() for c in reviews_str]

        UNK = word_dict['<unk>']
        lod = []
        for c in reviews:
P
peizhilin 已提交
206
            lod.append([np.int64(word_dict.get(words, UNK)) for words in c])
207 208 209 210 211 212 213 214 215 216 217 218 219 220

        base_shape = [[len(c) for c in lod]]

        tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
        assert feed_target_names[0] == "words"
        results = exe.run(
            inferencer,
            feed={feed_target_names[0]: tensor_words},
            fetch_list=fetch_targets,
            return_numpy=False)
        np_data = np.array(results[0])
        for i, r in enumerate(np_data):
            print("Predict probability of ", r[0], " to be positive and ", r[1],
                  " to be negative for review \'", reviews_str[i], "\'")
S
sidgoyal78 已提交
221 222 223 224 225 226


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_conv.inference.model"
227 228
    train(use_cuda, params_dirname)
    infer(use_cuda, params_dirname)
S
sidgoyal78 已提交
229 230 231


if __name__ == '__main__':
u010070587's avatar
u010070587 已提交
232 233
    args = parse_args()
    use_cuda = args.use_gpu  # set to True if training with GPU
234
    main(use_cuda)