train_dyn_rnn.py 6.4 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
from functools import partial
import numpy as np

CLASS_DIM = 2
EMB_DIM = 128
BATCH_SIZE = 128
LSTM_SIZE = 128


def dynamic_rnn_lstm(data, input_dim, class_dim, emb_dim, lstm_size):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    pred = dynamic_rnn_lstm(data, dict_dim, CLASS_DIM, EMB_DIM, LSTM_SIZE)
    return pred


def train_program(word_dict):
    prediction = inference_program(word_dict)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    word_dict = paddle.dataset.imdb.word_dict()
    trainer = fluid.Trainer(
        train_func=partial(train_program, word_dict),
        place=place,
        optimizer_func=optimizer_func)

    def event_handler(event):
        if isinstance(event, fluid.EndEpochEvent):
            test_reader = paddle.batch(
                paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
            avg_cost, acc = trainer.test(
                reader=test_reader, feed_order=['words', 'label'])

            print("avg_cost: %s" % avg_cost)
            print("acc     : %s" % acc)

            if acc > 0.2:  # Smaller value to increase CI speed
                trainer.save_params(params_dirname)
                trainer.stop()

            else:
                print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                    event.epoch + 1, avg_cost, acc))
                if math.isnan(avg_cost):
                    sys.exit("got NaN loss, training failed.")
        elif isinstance(event, fluid.EndStepEvent):
            print("Step {0}, Epoch {1} Metrics {2}".format(
                event.step, event.epoch, map(np.array, event.metrics)))
            if event.step == 1:  # Run 2 iterations to speed CI
                trainer.save_params(params_dirname)
                trainer.stop()

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
        feed_order=['words', 'label'])


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

    inferencer = fluid.Inferencer(
        infer_func=partial(inference_program, word_dict),
        param_path=params_dirname,
        place=place)

    # Setup input by creating LoDTensor to represent sequence of words.
    # Here each word is the basic element of the LoDTensor and the shape of 
    # each word (base_shape) should be [1] since it is simply an index to 
    # look up for the corresponding word vector.
    # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
    # which has only one lod level. Then the created LoDTensor will have only 
    # one higher level structure (sequence of words, or sentence) than the basic 
    # element (word). Hence the LoDTensor will hold data for three sentences of 
    # length 3, 4 and 2, respectively. 
    # Note that lod info should be a list of lists.
    lod = [[3, 4, 2]]
    base_shape = [1]
    # The range of random integers is [low, high]
    tensor_words = fluid.create_random_int_lodtensor(
        lod, base_shape, place, low=0, high=len(word_dict) - 1)
    results = inferencer.infer({'words': tensor_words})
    print("infer results: ", results)


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_conv.inference.model"
    train(use_cuda, train_program, params_dirname)
    infer(use_cuda, inference_program, params_dirname)


if __name__ == '__main__':
    for use_cuda in (False, True):
        main(use_cuda=use_cuda)