提交 1fe12fff 编写于 作者: P peizhilin

fix on windows

test=develop
上级 c2e2a0ca
......@@ -188,11 +188,11 @@ def infer(use_cuda, params_dirname=None):
# meaning there is only one level of detail and there is only one sequence of
# one word on this level.
# Note that recursive_sequence_lengths should be a list of lists.
data1 = numpy.array([[211]], dtype='int64') # 'among'
data2 = numpy.array([[6]], dtype='int64') # 'a'
data3 = numpy.array([[96]], dtype='int64') # 'group'
data4 = numpy.array([[4]], dtype='int64') # 'of'
lod = numpy.array([[1]], dtype='int64')
data1 = [[211L]] # 'among'
data2 = [[6L]] # 'a'
data3 = [[96L]] # 'group'
data4 = [[4L]] # 'of'
lod = [[1L]]
first_word = fluid.create_lod_tensor(data1, lod, place)
second_word = fluid.create_lod_tensor(data2, lod, place)
......
......@@ -271,25 +271,25 @@ def infer(use_cuda, params_dirname):
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
# level of detail info, indicating that `data` consists of two sequences
# of length 3 and 2, respectively.
user_id = fluid.create_lod_tensor([[1]], [[1]], place)
user_id = fluid.create_lod_tensor([[1L]], [[1]], place)
assert feed_target_names[1] == "gender_id"
gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
gender_id = fluid.create_lod_tensor([[1L]], [[1]], place)
assert feed_target_names[2] == "age_id"
age_id = fluid.create_lod_tensor([[0]], [[1]], place)
age_id = fluid.create_lod_tensor([[0L]], [[1]], place)
assert feed_target_names[3] == "job_id"
job_id = fluid.create_lod_tensor([[10]], [[1]], place)
job_id = fluid.create_lod_tensor([[10L]], [[1]], place)
assert feed_target_names[4] == "movie_id"
movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
movie_id = fluid.create_lod_tensor([[783L]], [[1]], place)
assert feed_target_names[5] == "category_id"
category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
category_id = fluid.create_lod_tensor([[10L, 8L, 9L]], [[3]], place)
assert feed_target_names[6] == "movie_title"
movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]],
movie_title = fluid.create_lod_tensor([[1069L, 4140L, 2923L, 710L, 988L]],
[[5]], place)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
......
......@@ -185,7 +185,7 @@ def infer(use_cuda, params_dirname=None):
UNK = word_dict['<unk>']
lod = []
for c in reviews:
lod.append([word_dict.get(words, UNK) for words in c])
lod.append([np.int64(word_dict.get(words, UNK)) for words in c])
base_shape = [[len(c) for c in lod]]
......
......@@ -197,7 +197,7 @@ def infer(use_cuda, params_dirname=None):
UNK = word_dict['<unk>']
lod = []
for c in reviews:
lod.append([word_dict.get(words, UNK) for words in c])
lod.append([np.int64(word_dict.get(words, UNK)) for words in c])
base_shape = [[len(c) for c in lod]]
......
......@@ -195,7 +195,7 @@ def infer(use_cuda, params_dirname=None):
UNK = word_dict['<unk>']
lod = []
for c in reviews:
lod.append([word_dict.get(words, UNK) for words in c])
lod.append([np.int64(word_dict.get(words, UNK)) for words in c])
base_shape = [[len(c) for c in lod]]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册