train_dyn_rnn.py 6.9 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
S
sidgoyal78 已提交
18 19 20 21
import paddle
import paddle.fluid as fluid
from functools import partial
import numpy as np
Y
Yu Yang 已提交
22 23 24 25 26 27 28 29 30 31 32
import sys

try:
    from paddle.fluid.contrib.trainer import *
    from paddle.fluid.contrib.inferencer import *
except ImportError:
    print(
        "In the fluid 1.0, the trainer and inferencer are moving to paddle.fluid.contrib",
        file=sys.stderr)
    from paddle.fluid.trainer import *
    from paddle.fluid.inferencer import *
S
sidgoyal78 已提交
33 34 35 36 37

CLASS_DIM = 2
EMB_DIM = 128
BATCH_SIZE = 128
LSTM_SIZE = 128
N
Nicky 已提交
38
USE_GPU = False
S
sidgoyal78 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


def dynamic_rnn_lstm(data, input_dim, class_dim, emb_dim, lstm_size):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    pred = dynamic_rnn_lstm(data, dict_dim, CLASS_DIM, EMB_DIM, LSTM_SIZE)
    return pred


def train_program(word_dict):
    prediction = inference_program(word_dict)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
101
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
102
    word_dict = paddle.dataset.imdb.word_dict()
103 104 105 106 107 108 109 110 111 112 113

    print("Reading training data....")
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

Y
yuyang 已提交
114
    trainer = Trainer(
S
sidgoyal78 已提交
115 116 117 118
        train_func=partial(train_program, word_dict),
        place=place,
        optimizer_func=optimizer_func)

119 120
    feed_order = ['words', 'label']

S
sidgoyal78 已提交
121
    def event_handler(event):
Y
yuyang 已提交
122
        if isinstance(event, EndStepEvent):
123 124 125
            if event.step % 10 == 0:
                avg_cost, acc = trainer.test(
                    reader=test_reader, feed_order=feed_order)
S
sidgoyal78 已提交
126

127 128 129 130
                print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                    event.step, avg_cost, acc))

                print("Step {0}, Epoch {1} Metrics {2}".format(
M
minqiyang 已提交
131 132
                    event.step, event.epoch, list(map(np.array,
                                                      event.metrics))))
133

Y
yuyang 已提交
134
        elif isinstance(event, EndEpochEvent):
135
            trainer.save_params(params_dirname)
S
sidgoyal78 已提交
136 137 138 139 140

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
141
        feed_order=feed_order)
S
sidgoyal78 已提交
142 143 144 145 146 147


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

Y
yuyang 已提交
148
    inferencer = Inferencer(
S
sidgoyal78 已提交
149 150 151 152 153
        infer_func=partial(inference_program, word_dict),
        param_path=params_dirname,
        place=place)

    # Setup input by creating LoDTensor to represent sequence of words.
154 155
    # Here each word is the basic element of the LoDTensor and the shape of
    # each word (base_shape) should be [1] since it is simply an index to
S
sidgoyal78 已提交
156 157
    # look up for the corresponding word vector.
    # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
158 159 160 161
    # which has only one lod level. Then the created LoDTensor will have only
    # one higher level structure (sequence of words, or sentence) than the basic
    # element (word). Hence the LoDTensor will hold data for three sentences of
    # length 3, 4 and 2, respectively.
S
sidgoyal78 已提交
162
    # Note that lod info should be a list of lists.
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    reviews_str = [
        'read the book forget the movie', 'this is a great movie',
        'this is very bad'
    ]
    reviews = [c.split() for c in reviews_str]

    UNK = word_dict['<unk>']
    lod = []
    for c in reviews:
        lod.append([word_dict.get(words, UNK) for words in c])

    base_shape = [[len(c) for c in lod]]

    tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
S
sidgoyal78 已提交
178
    results = inferencer.infer({'words': tensor_words})
179 180 181 182

    for i, r in enumerate(results[0]):
        print("Predict probability of ", r[0], " to be positive and ", r[1],
              " to be negative for review \'", reviews_str[i], "\'")
S
sidgoyal78 已提交
183 184 185 186 187 188 189 190 191 192 193


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_conv.inference.model"
    train(use_cuda, train_program, params_dirname)
    infer(use_cuda, inference_program, params_dirname)


if __name__ == '__main__':
W
Wang,Jeff 已提交
194
    use_cuda = False  # set to True if training with GPU
195
    main(use_cuda)