Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
4d401fc8
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d401fc8
编写于
8月 22, 2022
作者:
W
wjj19950828
浏览文件
操作
浏览文件
下载
差异文件
fixed readme
上级
c442b87c
27d70401
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
458 addition
and
6 deletion
+458
-6
README.md
README.md
+2
-2
docs/inference_model_convertor/op_list.md
docs/inference_model_convertor/op_list.md
+1
-1
tests/onnx/test_auto_scan_conv2d.py
tests/onnx/test_auto_scan_conv2d.py
+0
-3
tests/onnx/test_auto_scan_hardsigmoid.py
tests/onnx/test_auto_scan_hardsigmoid.py
+64
-0
tests/onnx/test_auto_scan_isinf.py
tests/onnx/test_auto_scan_isinf.py
+57
-0
tests/onnx/test_auto_scan_isnan.py
tests/onnx/test_auto_scan_isnan.py
+56
-0
tests/onnx/test_auto_scan_reduce_ops.py
tests/onnx/test_auto_scan_reduce_ops.py
+71
-0
tests/onnx/test_auto_scan_sum_7.py
tests/onnx/test_auto_scan_sum_7.py
+59
-0
tests/onnx/test_auto_scan_sum_8.py
tests/onnx/test_auto_scan_sum_8.py
+67
-0
x2paddle/op_mapper/onnx2paddle/opset10.py
x2paddle/op_mapper/onnx2paddle/opset10.py
+14
-0
x2paddle/op_mapper/onnx2paddle/opset7.py
x2paddle/op_mapper/onnx2paddle/opset7.py
+66
-0
x2paddle/op_mapper/onnx2paddle/opset9.py
x2paddle/op_mapper/onnx2paddle/opset9.py
+1
-0
未找到文件。
README.md
浏览文件 @
4d401fc8
...
@@ -10,7 +10,7 @@
...
@@ -10,7 +10,7 @@
## 简介
## 简介
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持
**推理模型的框架转换**
与
**PyTorch训练代码迁移**
,我们还提供了详细的不同框架间API对比文档,降低开发者
上手飞桨核心的学习
成本。
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持
**推理模型的框架转换**
与
**PyTorch训练代码迁移**
,我们还提供了详细的不同框架间API对比文档,降低开发者
将模型迁移到飞桨的时间
成本。
...
@@ -22,7 +22,7 @@ X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学
...
@@ -22,7 +22,7 @@ X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学
-
**支持的模型丰富**
-
**支持的模型丰富**
-
在主流的CV和NLP模型上
均支持转换,涵盖了19+个Caffe预测模型转换、27+个TensorFlow预测模型转换、32+个ONNX预测模型转换、27+个PyTorch预测模型转换、2+个PyTorch训练项目转换,详见
***[支持列表](./docs/introduction/x2paddle_model_zoo
.md)**
*
-
在主流的CV和NLP模型上
支持大部分模型转换,目前X2Paddle支持130+ PyTorch OP,90+ ONNX OP,90+ TensorFlow OP 以及 30+ Caffe OP,详见
***[支持列表](./docs/inference_model_convertor/op_list
.md)**
*
-
**简洁易用**
-
**简洁易用**
...
...
docs/inference_model_convertor/op_list.md
浏览文件 @
4d401fc8
# X2Paddle支持OP列表
# X2Paddle支持OP列表
> 目前X2Paddle支持90+
的TensorFlow OP,30+的Caffe Layer,80+的ONNX OP,120+的PyTorch Aten,10+的PyTorch Prim
覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持90+
TensorFlow OP,30+ Caffe OP,90+ ONNX OP,130+ PyTorch OP,
覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
...
tests/onnx/test_auto_scan_conv2d.py
浏览文件 @
4d401fc8
...
@@ -15,9 +15,6 @@
...
@@ -15,9 +15,6 @@
from
auto_scan_test
import
OPConvertAutoScanTest
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
hypothesis.strategies
as
st
import
onnx
from
onnx
import
helper
from
onnx
import
TensorProto
import
numpy
as
np
import
numpy
as
np
import
unittest
import
unittest
...
...
tests/onnx/test_auto_scan_hardsigmoid.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestHardSigmoidCovert
(
OPConvertAutoScanTest
):
"""
ONNX op: HardSigmoid
OPset version: 7~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
2
,
max_value
=
6
),
min_size
=
2
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
alpha
=
random
.
random
()
beta
=
random
.
random
()
config
=
{
"op_names"
:
[
"HardSigmoid"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[[
input_dtype
]],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
7
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{
"alpha"
:
alpha
,
"beta"
:
beta
,
}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_isinf.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestIsInfConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: IsInf
OPset version: 10~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"IsInf"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
10
,
"max_opset_version"
:
15
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
"run_dynamic"
:
True
,
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_isnan.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestIsNaNConcert
(
OPConvertAutoScanTest
):
"""
ONNX op: IsNaN
OPset version: 9~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"IsNaN"
,
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
9
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
"run_dynamic"
:
True
,
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_reduce_ops.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestReduceOpsConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Reduce Ops
OPset version: 7~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
,
"int32"
,
"int64"
]))
axes
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=-
len
(
input_shape
),
max_value
=
len
(
input_shape
)
-
1
),
min_size
=
1
,
max_size
=
1
))
keep_dim
=
draw
(
st
.
integers
(
min_value
=
0
,
max_value
=
1
))
config
=
{
"op_names"
:
[
"ReduceL1"
,
"ReduceL2"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
7
,
"max_opset_version"
:
15
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
}
attrs
=
{
"axes"
:
axes
,
"keepdims"
:
keep_dim
,
}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_sum_7.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
from
onnxbase
import
randtool
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
class
TestSumConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Sum
OPset version: 7
"""
def
sample_convert_config
(
self
,
draw
):
input1_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
10
,
max_value
=
20
),
min_size
=
2
,
max_size
=
4
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"Sum"
],
"test_data_shapes"
:
[
input1_shape
,
input1_shape
],
"test_data_types"
:
[[
input_dtype
],
[
input_dtype
]],
"inputs_shape"
:
[],
"min_opset_version"
:
7
,
"max_opset_version"
:
7
,
"inputs_name"
:
[
"x"
,
"y"
],
"outputs_name"
:
[
"z"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_sum_8.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
from
onnxbase
import
randtool
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
class
TestSumConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Sum
OPset version: 8~15
"""
def
sample_convert_config
(
self
,
draw
):
input1_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
10
,
max_value
=
20
),
min_size
=
2
,
max_size
=
4
))
if
draw
(
st
.
booleans
()):
input2_shape
=
[
input1_shape
[
-
1
]]
else
:
input2_shape
=
input1_shape
def
generator_data
():
input_data
=
randtool
(
"float"
,
-
5.0
,
5.0
,
input2_shape
)
input_data
[
abs
(
input_data
)
<
1.0
]
=
1.0
return
input_data
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"Sum"
],
"test_data_shapes"
:
[
input1_shape
,
generator_data
],
"test_data_types"
:
[[
input_dtype
],
[
input_dtype
]],
"inputs_shape"
:
[],
"min_opset_version"
:
8
,
"inputs_name"
:
[
"x"
,
"y"
],
"outputs_name"
:
[
"z"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
x2paddle/op_mapper/onnx2paddle/opset10.py
浏览文件 @
4d401fc8
...
@@ -112,3 +112,17 @@ class OpSet10(OpSet9):
...
@@ -112,3 +112,17 @@ class OpSet10(OpSet9):
inputs
=
{
"x"
:
val_x
.
name
,
inputs
=
{
"x"
:
val_x
.
name
,
"y"
:
val_y
.
name
},
"y"
:
val_y
.
name
},
outputs
=
[
node
.
name
])
outputs
=
[
node
.
name
])
@
print_mapping_info
def
IsInf
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
if
node
.
get_attr
(
'detect_negative'
)
!=
None
or
node
.
get_attr
(
'detect_positive'
)
!=
None
:
if
node
.
get_attr
(
'detect_negative'
)
!=
1
or
node
.
get_attr
(
'detect_positive'
)
!=
1
:
raise
Exception
(
"x2addle does not currently support IsINF with attributes 'detect_negative' and 'detect_positive'."
)
else
:
self
.
paddle_graph
.
add_layer
(
'paddle.isinf'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
node
.
name
])
x2paddle/op_mapper/onnx2paddle/opset7.py
浏览文件 @
4d401fc8
...
@@ -132,3 +132,69 @@ class OpSet7(OpSet):
...
@@ -132,3 +132,69 @@ class OpSet7(OpSet):
inputs
=
{
"x"
:
val_x
.
name
},
inputs
=
{
"x"
:
val_x
.
name
},
axis
=
axes
,
axis
=
axes
,
outputs
=
[
node
.
name
])
outputs
=
[
node
.
name
])
@
print_mapping_info
def
ReduceL1
(
self
,
node
):
output_name
=
node
.
name
layer_outputs
=
[
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
keepdims
=
False
if
node
.
get_attr
(
'keepdims'
)
==
0
else
True
layer_attrs
=
{
'p'
:
1
,
'axis'
:
axes
,
'keepdim'
:
keepdims
}
if
val_x
.
dtype
!=
'float32'
and
val_x
.
dtype
!=
'float64'
:
indices_cast
=
val_x
.
name
+
'_cast'
mid_norm
=
val_x
.
name
+
'_norm'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
indices_cast
],
dtype
=
string
(
'float32'
))
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
[
mid_norm
],
**
layer_attrs
)
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
mid_norm
},
outputs
=
[
node
.
name
],
dtype
=
string
(
val_x
.
dtype
))
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
ReduceL2
(
self
,
node
):
output_name
=
node
.
name
layer_outputs
=
[
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
keepdims
=
False
if
node
.
get_attr
(
'keepdims'
)
==
0
else
True
layer_attrs
=
{
'p'
:
2
,
'axis'
:
axes
,
'keepdim'
:
keepdims
}
if
val_x
.
dtype
!=
'float32'
and
val_x
.
dtype
!=
'float64'
:
indices_cast
=
val_x
.
name
+
'_cast'
mid_norm
=
val_x
.
name
+
'_norm'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
indices_cast
],
dtype
=
string
(
'float32'
))
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
[
mid_norm
],
**
layer_attrs
)
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
mid_norm
},
outputs
=
[
node
.
name
],
dtype
=
string
(
val_x
.
dtype
))
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
x2paddle/op_mapper/onnx2paddle/opset9.py
浏览文件 @
4d401fc8
...
@@ -32,3 +32,4 @@ def print_mapping_info(func):
...
@@ -32,3 +32,4 @@ def print_mapping_info(func):
class
OpSet9
(
OpSet8
):
class
OpSet9
(
OpSet8
):
def
__init__
(
self
,
decoder
,
paddle_graph
):
def
__init__
(
self
,
decoder
,
paddle_graph
):
super
(
OpSet9
,
self
).
__init__
(
decoder
,
paddle_graph
)
super
(
OpSet9
,
self
).
__init__
(
decoder
,
paddle_graph
)
self
.
directly_map_ops
.
update
({
'IsNaN'
:
[
'paddle.isnan'
],
})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录