diff --git a/README.md b/README.md index 6130831c68a36966996c93e16e9f5f13b6c70ee6..b0f6dfe38f2fac0257f2b595645c3eee365e5b2d 100644 --- a/README.md +++ b/README.md @@ -10,7 +10,7 @@ ## 简介 -X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持**推理模型的框架转换**与**PyTorch训练代码迁移**,我们还提供了详细的不同框架间API对比文档,降低开发者上手飞桨核心的学习成本。 +X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持**推理模型的框架转换**与**PyTorch训练代码迁移**,我们还提供了详细的不同框架间API对比文档,降低开发者将模型迁移到飞桨的时间成本。 @@ -22,7 +22,7 @@ X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学 - **支持的模型丰富** - - 在主流的CV和NLP模型上均支持转换,涵盖了19+个Caffe预测模型转换、27+个TensorFlow预测模型转换、32+个ONNX预测模型转换、27+个PyTorch预测模型转换、2+个PyTorch训练项目转换,详见 ***[支持列表](./docs/introduction/x2paddle_model_zoo.md)*** + - 在主流的CV和NLP模型上支持大部分模型转换,目前X2Paddle支持130+ PyTorch OP,90+ ONNX OP,90+ TensorFlow OP 以及 30+ Caffe OP,详见 ***[支持列表](./docs/inference_model_convertor/op_list.md)*** - **简洁易用** diff --git a/docs/inference_model_convertor/op_list.md b/docs/inference_model_convertor/op_list.md index 6c074b4166de6f9676851553ac5f12ac12784422..497c9a2f036eaea6ce24238113dc6e3d4c83ee92 100755 --- a/docs/inference_model_convertor/op_list.md +++ b/docs/inference_model_convertor/op_list.md @@ -1,5 +1,5 @@ # X2Paddle支持OP列表 -> 目前X2Paddle支持90+的TensorFlow OP,30+的Caffe Layer,80+的ONNX OP,120+的PyTorch Aten,10+的PyTorch Prim覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。 +> 目前X2Paddle支持90+ TensorFlow OP,30+ Caffe OP,90+ ONNX OP,130+ PyTorch OP,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。 **注:** 目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:) diff --git a/tests/onnx/test_auto_scan_conv2d.py b/tests/onnx/test_auto_scan_conv2d.py index 7ec6c6e02283bca2b84f9854a699246297373755..c782d32af9dd619db2a7c95630497360cfa9215a 100644 --- a/tests/onnx/test_auto_scan_conv2d.py +++ b/tests/onnx/test_auto_scan_conv2d.py @@ -15,9 +15,6 @@ from auto_scan_test import OPConvertAutoScanTest from hypothesis import reproduce_failure import hypothesis.strategies as st -import onnx -from onnx import helper -from onnx import TensorProto import numpy as np import unittest diff --git a/tests/onnx/test_auto_scan_hardsigmoid.py b/tests/onnx/test_auto_scan_hardsigmoid.py new file mode 100644 index 0000000000000000000000000000000000000000..295ee0e4752090da9772e95c5297c170996b317f --- /dev/null +++ b/tests/onnx/test_auto_scan_hardsigmoid.py @@ -0,0 +1,64 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +import hypothesis.strategies as st +import numpy as np +import unittest +import random + + +class TestHardSigmoidCovert(OPConvertAutoScanTest): + """ + ONNX op: HardSigmoid + OPset version: 7~15 + """ + + def sample_convert_config(self, draw): + input_shape = draw( + st.lists( + st.integers( + min_value=2, max_value=6), min_size=2, max_size=5)) + input_dtype = draw(st.sampled_from(["float32"])) + + alpha = random.random() + + beta = random.random() + + config = { + "op_names": ["HardSigmoid"], + "test_data_shapes": [input_shape], + "test_data_types": [[input_dtype]], + "inputs_shape": [input_shape], + "min_opset_version": 7, + "inputs_name": ["x"], + "outputs_name": ["y"], + "delta": 1e-4, + "rtol": 1e-4 + } + + attrs = { + "alpha": alpha, + "beta": beta, + } + + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=30) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/onnx/test_auto_scan_isinf.py b/tests/onnx/test_auto_scan_isinf.py new file mode 100644 index 0000000000000000000000000000000000000000..9938b07eeb870a86bed7ee631050470bf50cbc05 --- /dev/null +++ b/tests/onnx/test_auto_scan_isinf.py @@ -0,0 +1,57 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +import hypothesis.strategies as st +import numpy as np +import unittest +import random + + +class TestIsInfConvert(OPConvertAutoScanTest): + """ + ONNX op: IsInf + OPset version: 10~15 + """ + + def sample_convert_config(self, draw): + input_shape = draw( + st.lists( + st.integers( + min_value=20, max_value=30), min_size=3, max_size=5)) + input_dtype = draw(st.sampled_from(["float32"])) + config = { + "op_names": ["IsInf"], + "test_data_shapes": [input_shape], + "test_data_types": [input_dtype], + "inputs_shape": [input_shape], + "min_opset_version": 10, + "max_opset_version": 15, + "inputs_name": ["x"], + "outputs_name": ["y"], + "delta": 1e-4, + "rtol": 1e-4, + "run_dynamic": True, + } + + attrs = {} + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=50) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/onnx/test_auto_scan_isnan.py b/tests/onnx/test_auto_scan_isnan.py new file mode 100644 index 0000000000000000000000000000000000000000..d72054482323799d634ac5f77883c786208b7d58 --- /dev/null +++ b/tests/onnx/test_auto_scan_isnan.py @@ -0,0 +1,56 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +import hypothesis.strategies as st +import numpy as np +import unittest +import random + + +class TestIsNaNConcert(OPConvertAutoScanTest): + """ + ONNX op: IsNaN + OPset version: 9~15 + """ + + def sample_convert_config(self, draw): + input_shape = draw( + st.lists( + st.integers( + min_value=20, max_value=30), min_size=3, max_size=5)) + input_dtype = draw(st.sampled_from(["float32"])) + + config = { + "op_names": ["IsNaN", ], + "test_data_shapes": [input_shape], + "test_data_types": [input_dtype], + "inputs_shape": [input_shape], + "min_opset_version": 9, + "inputs_name": ["x"], + "outputs_name": ["y"], + "delta": 1e-4, + "rtol": 1e-4, + "run_dynamic": True, + } + attrs = {} + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=50) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/onnx/test_auto_scan_reduce_ops.py b/tests/onnx/test_auto_scan_reduce_ops.py new file mode 100644 index 0000000000000000000000000000000000000000..3c5d9fc6d15ada1d63b81cb78233847df122ee6a --- /dev/null +++ b/tests/onnx/test_auto_scan_reduce_ops.py @@ -0,0 +1,71 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +import hypothesis.strategies as st +import numpy as np +import unittest +import random + + +class TestReduceOpsConvert(OPConvertAutoScanTest): + """ + ONNX op: Reduce Ops + OPset version: 7~15 + """ + + def sample_convert_config(self, draw): + input_shape = draw( + st.lists( + st.integers( + min_value=20, max_value=30), min_size=3, max_size=5)) + + input_dtype = draw(st.sampled_from(["float32", "int32", "int64"])) + + axes = draw( + st.lists( + st.integers( + min_value=-len(input_shape), max_value=len(input_shape) - + 1), + min_size=1, + max_size=1)) + + keep_dim = draw(st.integers(min_value=0, max_value=1)) + config = { + "op_names": ["ReduceL1", "ReduceL2"], + "test_data_shapes": [input_shape], + "test_data_types": [input_dtype], + "inputs_shape": [input_shape], + "min_opset_version": 7, + "max_opset_version": 15, + "inputs_name": ["x"], + "outputs_name": ["y"], + "delta": 1e-4, + "rtol": 1e-4, + } + + attrs = { + "axes": axes, + "keepdims": keep_dim, + } + + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=50) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/onnx/test_auto_scan_sum_7.py b/tests/onnx/test_auto_scan_sum_7.py new file mode 100644 index 0000000000000000000000000000000000000000..d9b28779658cb969f5680319a2292ac19531eec3 --- /dev/null +++ b/tests/onnx/test_auto_scan_sum_7.py @@ -0,0 +1,59 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +from onnxbase import randtool +import hypothesis.strategies as st +import numpy as np +import unittest + + +class TestSumConvert(OPConvertAutoScanTest): + """ + ONNX op: Sum + OPset version: 7 + """ + + def sample_convert_config(self, draw): + input1_shape = draw( + st.lists( + st.integers( + min_value=10, max_value=20), min_size=2, max_size=4)) + + input_dtype = draw(st.sampled_from(["float32"])) + + config = { + "op_names": ["Sum"], + "test_data_shapes": [input1_shape, input1_shape], + "test_data_types": [[input_dtype], [input_dtype]], + "inputs_shape": [], + "min_opset_version": 7, + "max_opset_version": 7, + "inputs_name": ["x", "y"], + "outputs_name": ["z"], + "delta": 1e-4, + "rtol": 1e-4 + } + + attrs = {} + + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=30) + + +if __name__ == "__main__": + unittest.main() diff --git a/tests/onnx/test_auto_scan_sum_8.py b/tests/onnx/test_auto_scan_sum_8.py new file mode 100644 index 0000000000000000000000000000000000000000..303ee27933a4cb3dbb61b42cbce4cac6a84e6382 --- /dev/null +++ b/tests/onnx/test_auto_scan_sum_8.py @@ -0,0 +1,67 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from auto_scan_test import OPConvertAutoScanTest +from hypothesis import reproduce_failure +from onnxbase import randtool +import hypothesis.strategies as st +import numpy as np +import unittest + + +class TestSumConvert(OPConvertAutoScanTest): + """ + ONNX op: Sum + OPset version: 8~15 + """ + + def sample_convert_config(self, draw): + input1_shape = draw( + st.lists( + st.integers( + min_value=10, max_value=20), min_size=2, max_size=4)) + + if draw(st.booleans()): + input2_shape = [input1_shape[-1]] + else: + input2_shape = input1_shape + + def generator_data(): + input_data = randtool("float", -5.0, 5.0, input2_shape) + input_data[abs(input_data) < 1.0] = 1.0 + return input_data + + input_dtype = draw(st.sampled_from(["float32"])) + config = { + "op_names": ["Sum"], + "test_data_shapes": [input1_shape, generator_data], + "test_data_types": [[input_dtype], [input_dtype]], + "inputs_shape": [], + "min_opset_version": 8, + "inputs_name": ["x", "y"], + "outputs_name": ["z"], + "delta": 1e-4, + "rtol": 1e-4 + } + + attrs = {} + + return (config, attrs) + + def test(self): + self.run_and_statis(max_examples=30) + + +if __name__ == "__main__": + unittest.main() diff --git a/x2paddle/op_mapper/onnx2paddle/opset10.py b/x2paddle/op_mapper/onnx2paddle/opset10.py index 5a697e95a31d5805ac090c8c3c6533df00f3a3ca..9310eb30d63c308a813b2668be6c473904199566 100644 --- a/x2paddle/op_mapper/onnx2paddle/opset10.py +++ b/x2paddle/op_mapper/onnx2paddle/opset10.py @@ -112,3 +112,17 @@ class OpSet10(OpSet9): inputs={"x": val_x.name, "y": val_y.name}, outputs=[node.name]) + + @print_mapping_info + def IsInf(self, node): + val_x = self.graph.get_input_node(node, idx=0, copy=True) + if node.get_attr('detect_negative') != None or node.get_attr( + 'detect_positive') != None: + if node.get_attr('detect_negative') != 1 or node.get_attr( + 'detect_positive') != 1: + raise Exception( + "x2addle does not currently support IsINF with attributes 'detect_negative' and 'detect_positive'." + ) + else: + self.paddle_graph.add_layer( + 'paddle.isinf', inputs={"x": val_x.name}, outputs=[node.name]) diff --git a/x2paddle/op_mapper/onnx2paddle/opset7.py b/x2paddle/op_mapper/onnx2paddle/opset7.py index 2fe457ef0ab0d32c4206f75270ccf506398980fe..cf231af72ec26bbd3b084de91d9dc9583b21f210 100644 --- a/x2paddle/op_mapper/onnx2paddle/opset7.py +++ b/x2paddle/op_mapper/onnx2paddle/opset7.py @@ -132,3 +132,69 @@ class OpSet7(OpSet): inputs={"x": val_x.name}, axis=axes, outputs=[node.name]) + + @print_mapping_info + def ReduceL1(self, node): + output_name = node.name + layer_outputs = [output_name] + val_x = self.graph.get_input_node(node, idx=0, copy=True) + axes = node.get_attr('axes') + keepdims = False if node.get_attr('keepdims') == 0 else True + layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims} + if val_x.dtype != 'float32' and val_x.dtype != 'float64': + indices_cast = val_x.name + '_cast' + mid_norm = val_x.name + '_norm' + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": val_x.name}, + outputs=[indices_cast], + dtype=string('float32')) + self.paddle_graph.add_layer( + "paddle.norm", + inputs={"x": indices_cast}, + outputs=[mid_norm], + **layer_attrs) + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": mid_norm}, + outputs=[node.name], + dtype=string(val_x.dtype)) + else: + self.paddle_graph.add_layer( + "paddle.norm", + inputs={"x": val_x.name}, + outputs=layer_outputs, + **layer_attrs) + + @print_mapping_info + def ReduceL2(self, node): + output_name = node.name + layer_outputs = [output_name] + val_x = self.graph.get_input_node(node, idx=0, copy=True) + axes = node.get_attr('axes') + keepdims = False if node.get_attr('keepdims') == 0 else True + layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims} + if val_x.dtype != 'float32' and val_x.dtype != 'float64': + indices_cast = val_x.name + '_cast' + mid_norm = val_x.name + '_norm' + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": val_x.name}, + outputs=[indices_cast], + dtype=string('float32')) + self.paddle_graph.add_layer( + "paddle.norm", + inputs={"x": indices_cast}, + outputs=[mid_norm], + **layer_attrs) + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": mid_norm}, + outputs=[node.name], + dtype=string(val_x.dtype)) + else: + self.paddle_graph.add_layer( + "paddle.norm", + inputs={"x": val_x.name}, + outputs=layer_outputs, + **layer_attrs) diff --git a/x2paddle/op_mapper/onnx2paddle/opset9.py b/x2paddle/op_mapper/onnx2paddle/opset9.py index 846e84719bfd4d19909eeec7c3bafca181e62c11..98d88aaf84182374da9edc00e074e2271d37788f 100644 --- a/x2paddle/op_mapper/onnx2paddle/opset9.py +++ b/x2paddle/op_mapper/onnx2paddle/opset9.py @@ -32,3 +32,4 @@ def print_mapping_info(func): class OpSet9(OpSet8): def __init__(self, decoder, paddle_graph): super(OpSet9, self).__init__(decoder, paddle_graph) + self.directly_map_ops.update({'IsNaN': ['paddle.isnan'], })