未验证 提交 27d70401 编写于 作者: Q qqj1130247885 提交者: GitHub

Add Sum (#873)

* Update onnx_decoder.py

* Update opset.py

* Update opset.py

* Update opset.py

* Update onnx_decoder.py

* fix gemm and resize

* add auto_test of 1 input ops

* Update onnx_decoder.py

* Update opset_legacy.py

* Update opset_legacy.py

* Update onnx_decoder.py

* Update opset_legacy.py

* Update opset_legacy.py

* Update opset_legacy.py

* Update test_auto_scan_one_input_ops_float32.py

* Delete test_auto_scan_one_input_ops_float32.py

* Create test_auto_scan_one_input_ops_float32.py

* Update opset_legacy.py

* test

* add test of Tan

* rename

* add ops in directly map

* keep op_legacy

* Delete test_auto_scan_one_input_ops_float32.py

* modify the name

* fix

* add ceil op

* modify opset7

* Delete test_auto_scan_unarray_ops.py

* add test of elu

* Update test_auto_scan_unary_ops.py

* Update test_auto_scan_elu.py

* Update test_auto_scan_elu.py

* fixx

* test

* test

* test

* test

* add ref

* add sinh + tanh

* add sinh + tanh

* add sinh + tanh

* add sin Sinh tang

* Update opset7.py

* add :cosh,acosh,sinh,acosh

* try

* try

* add Atanh

* add Atanh

* s

* s

* add Sqrt

* s

* add shape

* s

* add sign

* add_celu

* Delete test_auto_scan_elu.py

* Delete test_auto_scan_unary_ops.py

* Delete opset7.py

* 复原

* add Celu

* Update opset7.py

* Update opset9.py

* add selu

* Update opset7.py

* add relu

* update relu datatype

* Update opset14.py

* fix code style

* fix code style

* add_hardsigmoid

* add_reduce_op

* fix

* fix

* add reduceL2

* remove log and exp

* add selu in opset7

* Delete test_auto_scan_celu.py

* Delete test_auto_scan_relu.py

* Delete test_auto_scan_reduce_ops.py

* Delete test_auto_scan_hardsigmoid.py

* add selu in opset7

* add selu in opset12

* add selu in opset14

* Update opset7.py

* Update opset12.py

* Update opset14.py

* Update test_auto_scan_unary_ops.py

* Update opset14.py

* add elu

* fix style

* fix style

* remove onnx

* add auto scan test of softplus

* add auto scan test of sigmoid

* add test of sum OP in version 7

* add test of sum OP in version 8

* add test of sum OP in version 8

* Delete test_auto_scan_elu.py

* Delete test_auto_scan_unary_ops.py

* remove

* remove

* retest

* test
上级 ee369b34
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
from onnxbase import randtool
import hypothesis.strategies as st
import numpy as np
import unittest
class TestSumConvert(OPConvertAutoScanTest):
"""
ONNX op: Sum
OPset version: 7
"""
def sample_convert_config(self, draw):
input1_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=20), min_size=2, max_size=4))
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["Sum"],
"test_data_shapes": [input1_shape, input1_shape],
"test_data_types": [[input_dtype], [input_dtype]],
"inputs_shape": [],
"min_opset_version": 7,
"max_opset_version": 7,
"inputs_name": ["x", "y"],
"outputs_name": ["z"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
from onnxbase import randtool
import hypothesis.strategies as st
import numpy as np
import unittest
class TestSumConvert(OPConvertAutoScanTest):
"""
ONNX op: Sum
OPset version: 8~15
"""
def sample_convert_config(self, draw):
input1_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=20), min_size=2, max_size=4))
if draw(st.booleans()):
input2_shape = [input1_shape[-1]]
else:
input2_shape = input1_shape
def generator_data():
input_data = randtool("float", -5.0, 5.0, input2_shape)
input_data[abs(input_data) < 1.0] = 1.0
return input_data
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["Sum"],
"test_data_shapes": [input1_shape, generator_data],
"test_data_types": [[input_dtype], [input_dtype]],
"inputs_shape": [],
"min_opset_version": 8,
"inputs_name": ["x", "y"],
"outputs_name": ["z"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册