提交 4d401fc8 编写于 作者: W wjj19950828

fixed readme

......@@ -10,7 +10,7 @@
## 简介
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持**推理模型的框架转换****PyTorch训练代码迁移**,我们还提供了详细的不同框架间API对比文档,降低开发者上手飞桨核心的学习成本。
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持**推理模型的框架转换****PyTorch训练代码迁移**,我们还提供了详细的不同框架间API对比文档,降低开发者将模型迁移到飞桨的时间成本。
......@@ -22,7 +22,7 @@ X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学
- **支持的模型丰富**
- 在主流的CV和NLP模型上均支持转换,涵盖了19+个Caffe预测模型转换、27+个TensorFlow预测模型转换、32+个ONNX预测模型转换、27+个PyTorch预测模型转换、2+个PyTorch训练项目转换,详见 ***[支持列表](./docs/introduction/x2paddle_model_zoo.md)***
- 在主流的CV和NLP模型上支持大部分模型转换,目前X2Paddle支持130+ PyTorch OP,90+ ONNX OP,90+ TensorFlow OP 以及 30+ Caffe OP,详见 ***[支持列表](./docs/inference_model_convertor/op_list.md)***
- **简洁易用**
......
# X2Paddle支持OP列表
> 目前X2Paddle支持90+的TensorFlow OP,30+的Caffe Layer,80+的ONNX OP,120+的PyTorch Aten,10+的PyTorch Prim覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持90+ TensorFlow OP,30+ Caffe OP,90+ ONNX OP,130+ PyTorch OP,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:** 目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
......
......@@ -15,9 +15,6 @@
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import unittest
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestHardSigmoidCovert(OPConvertAutoScanTest):
"""
ONNX op: HardSigmoid
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=6), min_size=2, max_size=5))
input_dtype = draw(st.sampled_from(["float32"]))
alpha = random.random()
beta = random.random()
config = {
"op_names": ["HardSigmoid"],
"test_data_shapes": [input_shape],
"test_data_types": [[input_dtype]],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {
"alpha": alpha,
"beta": beta,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestIsInfConvert(OPConvertAutoScanTest):
"""
ONNX op: IsInf
OPset version: 10~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=3, max_size=5))
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["IsInf"],
"test_data_shapes": [input_shape],
"test_data_types": [input_dtype],
"inputs_shape": [input_shape],
"min_opset_version": 10,
"max_opset_version": 15,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
"run_dynamic": True,
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestIsNaNConcert(OPConvertAutoScanTest):
"""
ONNX op: IsNaN
OPset version: 9~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=3, max_size=5))
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["IsNaN", ],
"test_data_shapes": [input_shape],
"test_data_types": [input_dtype],
"inputs_shape": [input_shape],
"min_opset_version": 9,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
"run_dynamic": True,
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestReduceOpsConvert(OPConvertAutoScanTest):
"""
ONNX op: Reduce Ops
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=3, max_size=5))
input_dtype = draw(st.sampled_from(["float32", "int32", "int64"]))
axes = draw(
st.lists(
st.integers(
min_value=-len(input_shape), max_value=len(input_shape) -
1),
min_size=1,
max_size=1))
keep_dim = draw(st.integers(min_value=0, max_value=1))
config = {
"op_names": ["ReduceL1", "ReduceL2"],
"test_data_shapes": [input_shape],
"test_data_types": [input_dtype],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"max_opset_version": 15,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
}
attrs = {
"axes": axes,
"keepdims": keep_dim,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
from onnxbase import randtool
import hypothesis.strategies as st
import numpy as np
import unittest
class TestSumConvert(OPConvertAutoScanTest):
"""
ONNX op: Sum
OPset version: 7
"""
def sample_convert_config(self, draw):
input1_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=20), min_size=2, max_size=4))
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["Sum"],
"test_data_shapes": [input1_shape, input1_shape],
"test_data_types": [[input_dtype], [input_dtype]],
"inputs_shape": [],
"min_opset_version": 7,
"max_opset_version": 7,
"inputs_name": ["x", "y"],
"outputs_name": ["z"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
from onnxbase import randtool
import hypothesis.strategies as st
import numpy as np
import unittest
class TestSumConvert(OPConvertAutoScanTest):
"""
ONNX op: Sum
OPset version: 8~15
"""
def sample_convert_config(self, draw):
input1_shape = draw(
st.lists(
st.integers(
min_value=10, max_value=20), min_size=2, max_size=4))
if draw(st.booleans()):
input2_shape = [input1_shape[-1]]
else:
input2_shape = input1_shape
def generator_data():
input_data = randtool("float", -5.0, 5.0, input2_shape)
input_data[abs(input_data) < 1.0] = 1.0
return input_data
input_dtype = draw(st.sampled_from(["float32"]))
config = {
"op_names": ["Sum"],
"test_data_shapes": [input1_shape, generator_data],
"test_data_types": [[input_dtype], [input_dtype]],
"inputs_shape": [],
"min_opset_version": 8,
"inputs_name": ["x", "y"],
"outputs_name": ["z"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
......@@ -112,3 +112,17 @@ class OpSet10(OpSet9):
inputs={"x": val_x.name,
"y": val_y.name},
outputs=[node.name])
@print_mapping_info
def IsInf(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
if node.get_attr('detect_negative') != None or node.get_attr(
'detect_positive') != None:
if node.get_attr('detect_negative') != 1 or node.get_attr(
'detect_positive') != 1:
raise Exception(
"x2addle does not currently support IsINF with attributes 'detect_negative' and 'detect_positive'."
)
else:
self.paddle_graph.add_layer(
'paddle.isinf', inputs={"x": val_x.name}, outputs=[node.name])
......@@ -132,3 +132,69 @@ class OpSet7(OpSet):
inputs={"x": val_x.name},
axis=axes,
outputs=[node.name])
@print_mapping_info
def ReduceL1(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
@print_mapping_info
def ReduceL2(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
......@@ -32,3 +32,4 @@ def print_mapping_info(func):
class OpSet9(OpSet8):
def __init__(self, decoder, paddle_graph):
super(OpSet9, self).__init__(decoder, paddle_graph)
self.directly_map_ops.update({'IsNaN': ['paddle.isnan'], })
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册