Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
4d401fc8
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d401fc8
编写于
8月 22, 2022
作者:
W
wjj19950828
浏览文件
操作
浏览文件
下载
差异文件
fixed readme
上级
c442b87c
27d70401
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
458 addition
and
6 deletion
+458
-6
README.md
README.md
+2
-2
docs/inference_model_convertor/op_list.md
docs/inference_model_convertor/op_list.md
+1
-1
tests/onnx/test_auto_scan_conv2d.py
tests/onnx/test_auto_scan_conv2d.py
+0
-3
tests/onnx/test_auto_scan_hardsigmoid.py
tests/onnx/test_auto_scan_hardsigmoid.py
+64
-0
tests/onnx/test_auto_scan_isinf.py
tests/onnx/test_auto_scan_isinf.py
+57
-0
tests/onnx/test_auto_scan_isnan.py
tests/onnx/test_auto_scan_isnan.py
+56
-0
tests/onnx/test_auto_scan_reduce_ops.py
tests/onnx/test_auto_scan_reduce_ops.py
+71
-0
tests/onnx/test_auto_scan_sum_7.py
tests/onnx/test_auto_scan_sum_7.py
+59
-0
tests/onnx/test_auto_scan_sum_8.py
tests/onnx/test_auto_scan_sum_8.py
+67
-0
x2paddle/op_mapper/onnx2paddle/opset10.py
x2paddle/op_mapper/onnx2paddle/opset10.py
+14
-0
x2paddle/op_mapper/onnx2paddle/opset7.py
x2paddle/op_mapper/onnx2paddle/opset7.py
+66
-0
x2paddle/op_mapper/onnx2paddle/opset9.py
x2paddle/op_mapper/onnx2paddle/opset9.py
+1
-0
未找到文件。
README.md
浏览文件 @
4d401fc8
...
...
@@ -10,7 +10,7 @@
## 简介
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持
**推理模型的框架转换**
与
**PyTorch训练代码迁移**
,我们还提供了详细的不同框架间API对比文档,降低开发者
上手飞桨核心的学习
成本。
X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学习框架用户快速迁移至飞桨框架。目前支持
**推理模型的框架转换**
与
**PyTorch训练代码迁移**
,我们还提供了详细的不同框架间API对比文档,降低开发者
将模型迁移到飞桨的时间
成本。
...
...
@@ -22,7 +22,7 @@ X2Paddle是飞桨生态下的模型转换工具,致力于帮助其它深度学
-
**支持的模型丰富**
-
在主流的CV和NLP模型上
均支持转换,涵盖了19+个Caffe预测模型转换、27+个TensorFlow预测模型转换、32+个ONNX预测模型转换、27+个PyTorch预测模型转换、2+个PyTorch训练项目转换,详见
***[支持列表](./docs/introduction/x2paddle_model_zoo
.md)**
*
-
在主流的CV和NLP模型上
支持大部分模型转换,目前X2Paddle支持130+ PyTorch OP,90+ ONNX OP,90+ TensorFlow OP 以及 30+ Caffe OP,详见
***[支持列表](./docs/inference_model_convertor/op_list
.md)**
*
-
**简洁易用**
...
...
docs/inference_model_convertor/op_list.md
浏览文件 @
4d401fc8
# X2Paddle支持OP列表
> 目前X2Paddle支持90+
的TensorFlow OP,30+的Caffe Layer,80+的ONNX OP,120+的PyTorch Aten,10+的PyTorch Prim
覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持90+
TensorFlow OP,30+ Caffe OP,90+ ONNX OP,130+ PyTorch OP,
覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
...
tests/onnx/test_auto_scan_conv2d.py
浏览文件 @
4d401fc8
...
...
@@ -15,9 +15,6 @@
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
onnx
from
onnx
import
helper
from
onnx
import
TensorProto
import
numpy
as
np
import
unittest
...
...
tests/onnx/test_auto_scan_hardsigmoid.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestHardSigmoidCovert
(
OPConvertAutoScanTest
):
"""
ONNX op: HardSigmoid
OPset version: 7~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
2
,
max_value
=
6
),
min_size
=
2
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
alpha
=
random
.
random
()
beta
=
random
.
random
()
config
=
{
"op_names"
:
[
"HardSigmoid"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[[
input_dtype
]],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
7
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{
"alpha"
:
alpha
,
"beta"
:
beta
,
}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_isinf.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestIsInfConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: IsInf
OPset version: 10~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"IsInf"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
10
,
"max_opset_version"
:
15
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
"run_dynamic"
:
True
,
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_isnan.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestIsNaNConcert
(
OPConvertAutoScanTest
):
"""
ONNX op: IsNaN
OPset version: 9~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"IsNaN"
,
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
9
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
"run_dynamic"
:
True
,
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_reduce_ops.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
import
random
class
TestReduceOpsConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Reduce Ops
OPset version: 7~15
"""
def
sample_convert_config
(
self
,
draw
):
input_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
20
,
max_value
=
30
),
min_size
=
3
,
max_size
=
5
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
,
"int32"
,
"int64"
]))
axes
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=-
len
(
input_shape
),
max_value
=
len
(
input_shape
)
-
1
),
min_size
=
1
,
max_size
=
1
))
keep_dim
=
draw
(
st
.
integers
(
min_value
=
0
,
max_value
=
1
))
config
=
{
"op_names"
:
[
"ReduceL1"
,
"ReduceL2"
],
"test_data_shapes"
:
[
input_shape
],
"test_data_types"
:
[
input_dtype
],
"inputs_shape"
:
[
input_shape
],
"min_opset_version"
:
7
,
"max_opset_version"
:
15
,
"inputs_name"
:
[
"x"
],
"outputs_name"
:
[
"y"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
,
}
attrs
=
{
"axes"
:
axes
,
"keepdims"
:
keep_dim
,
}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
50
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_sum_7.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
from
onnxbase
import
randtool
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
class
TestSumConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Sum
OPset version: 7
"""
def
sample_convert_config
(
self
,
draw
):
input1_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
10
,
max_value
=
20
),
min_size
=
2
,
max_size
=
4
))
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"Sum"
],
"test_data_shapes"
:
[
input1_shape
,
input1_shape
],
"test_data_types"
:
[[
input_dtype
],
[
input_dtype
]],
"inputs_shape"
:
[],
"min_opset_version"
:
7
,
"max_opset_version"
:
7
,
"inputs_name"
:
[
"x"
,
"y"
],
"outputs_name"
:
[
"z"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tests/onnx/test_auto_scan_sum_8.py
0 → 100644
浏览文件 @
4d401fc8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
OPConvertAutoScanTest
from
hypothesis
import
reproduce_failure
from
onnxbase
import
randtool
import
hypothesis.strategies
as
st
import
numpy
as
np
import
unittest
class
TestSumConvert
(
OPConvertAutoScanTest
):
"""
ONNX op: Sum
OPset version: 8~15
"""
def
sample_convert_config
(
self
,
draw
):
input1_shape
=
draw
(
st
.
lists
(
st
.
integers
(
min_value
=
10
,
max_value
=
20
),
min_size
=
2
,
max_size
=
4
))
if
draw
(
st
.
booleans
()):
input2_shape
=
[
input1_shape
[
-
1
]]
else
:
input2_shape
=
input1_shape
def
generator_data
():
input_data
=
randtool
(
"float"
,
-
5.0
,
5.0
,
input2_shape
)
input_data
[
abs
(
input_data
)
<
1.0
]
=
1.0
return
input_data
input_dtype
=
draw
(
st
.
sampled_from
([
"float32"
]))
config
=
{
"op_names"
:
[
"Sum"
],
"test_data_shapes"
:
[
input1_shape
,
generator_data
],
"test_data_types"
:
[[
input_dtype
],
[
input_dtype
]],
"inputs_shape"
:
[],
"min_opset_version"
:
8
,
"inputs_name"
:
[
"x"
,
"y"
],
"outputs_name"
:
[
"z"
],
"delta"
:
1e-4
,
"rtol"
:
1e-4
}
attrs
=
{}
return
(
config
,
attrs
)
def
test
(
self
):
self
.
run_and_statis
(
max_examples
=
30
)
if
__name__
==
"__main__"
:
unittest
.
main
()
x2paddle/op_mapper/onnx2paddle/opset10.py
浏览文件 @
4d401fc8
...
...
@@ -112,3 +112,17 @@ class OpSet10(OpSet9):
inputs
=
{
"x"
:
val_x
.
name
,
"y"
:
val_y
.
name
},
outputs
=
[
node
.
name
])
@
print_mapping_info
def
IsInf
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
if
node
.
get_attr
(
'detect_negative'
)
!=
None
or
node
.
get_attr
(
'detect_positive'
)
!=
None
:
if
node
.
get_attr
(
'detect_negative'
)
!=
1
or
node
.
get_attr
(
'detect_positive'
)
!=
1
:
raise
Exception
(
"x2addle does not currently support IsINF with attributes 'detect_negative' and 'detect_positive'."
)
else
:
self
.
paddle_graph
.
add_layer
(
'paddle.isinf'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
node
.
name
])
x2paddle/op_mapper/onnx2paddle/opset7.py
浏览文件 @
4d401fc8
...
...
@@ -132,3 +132,69 @@ class OpSet7(OpSet):
inputs
=
{
"x"
:
val_x
.
name
},
axis
=
axes
,
outputs
=
[
node
.
name
])
@
print_mapping_info
def
ReduceL1
(
self
,
node
):
output_name
=
node
.
name
layer_outputs
=
[
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
keepdims
=
False
if
node
.
get_attr
(
'keepdims'
)
==
0
else
True
layer_attrs
=
{
'p'
:
1
,
'axis'
:
axes
,
'keepdim'
:
keepdims
}
if
val_x
.
dtype
!=
'float32'
and
val_x
.
dtype
!=
'float64'
:
indices_cast
=
val_x
.
name
+
'_cast'
mid_norm
=
val_x
.
name
+
'_norm'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
indices_cast
],
dtype
=
string
(
'float32'
))
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
[
mid_norm
],
**
layer_attrs
)
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
mid_norm
},
outputs
=
[
node
.
name
],
dtype
=
string
(
val_x
.
dtype
))
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
@
print_mapping_info
def
ReduceL2
(
self
,
node
):
output_name
=
node
.
name
layer_outputs
=
[
output_name
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
keepdims
=
False
if
node
.
get_attr
(
'keepdims'
)
==
0
else
True
layer_attrs
=
{
'p'
:
2
,
'axis'
:
axes
,
'keepdim'
:
keepdims
}
if
val_x
.
dtype
!=
'float32'
and
val_x
.
dtype
!=
'float64'
:
indices_cast
=
val_x
.
name
+
'_cast'
mid_norm
=
val_x
.
name
+
'_norm'
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
indices_cast
],
dtype
=
string
(
'float32'
))
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
[
mid_norm
],
**
layer_attrs
)
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
mid_norm
},
outputs
=
[
node
.
name
],
dtype
=
string
(
val_x
.
dtype
))
else
:
self
.
paddle_graph
.
add_layer
(
"paddle.norm"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
x2paddle/op_mapper/onnx2paddle/opset9.py
浏览文件 @
4d401fc8
...
...
@@ -32,3 +32,4 @@ def print_mapping_info(func):
class
OpSet9
(
OpSet8
):
def
__init__
(
self
,
decoder
,
paddle_graph
):
super
(
OpSet9
,
self
).
__init__
(
decoder
,
paddle_graph
)
self
.
directly_map_ops
.
update
({
'IsNaN'
:
[
'paddle.isnan'
],
})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录