opset.py 106.1 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
W
wjj19950828 已提交
125
        'LessOrEqual': 'paddle.less_equal',
S
SunAhong1993 已提交
126 127
    }

S
SunAhong1993 已提交
128 129 130
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
131 132 133
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
134
                    axes=None, keepdims=True)
135 136 137 138
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
139
                    axes=None, keepdim=True)
140 141 142 143
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
144
                    axes=None, keepdim=True)
145 146 147 148
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
149
                    axes=None, keepdim=True)
150
        ],
S
SunAhong1993 已提交
151 152
        # active function
        'Relu': ['paddle.nn.ReLU'],
153 154 155 156 157 158 159 160 161 162
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
163 164 165
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
166 167 168 169
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
170
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
171
        'Log': ['paddle.log'],
172 173 174
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
175 176 177 178
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
179 180
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
181 182 183 184 185 186 187 188 189
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
190
        self.done_weight_list = list()
191 192 193
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
194 195 196 197 198 199

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
215
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
216 217
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
218
            output_name = node.name
S
SunAhong1993 已提交
219
            layer_outputs = [op_name, output_name]
220

S
SunAhong1993 已提交
221 222
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
223
                inputs={"x": input.name},
S
SunAhong1993 已提交
224 225 226 227 228
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
229 230
                inputs={"x": input.name},
                outputs=[node.name],
231 232
                **layer_attrs)

S
SunAhong1993 已提交
233 234 235 236 237
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
238
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
239
        self.paddle_graph.add_layer(
240
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
241 242 243 244 245 246 247 248 249 250 251 252

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
253
            outputs=[node.name],
S
SunAhong1993 已提交
254 255
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
256 257 258 259 260 261 262

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
263

S
fix  
SunAhong1993 已提交
264
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
265
            self.paddle_graph.add_layer(
266 267
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
268
                outputs=[node.name],
S
SunAhong1993 已提交
269 270 271 272
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
273
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
274 275 276
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
277
                outputs=[node.name],
S
SunAhong1993 已提交
278
                shape=shape,
S
SunAhong1993 已提交
279
                attr=string(node.name),
S
SunAhong1993 已提交
280
                dtype=string(dtype),
281
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
298
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
299
        attrs = dict()
W
WJJ1995 已提交
300
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
301 302 303 304
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
305
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
306
                # which is the same as the rank of input.
W
WJJ1995 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
334 335 336
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
337
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
338
                # which is the same as the rank of input.
339 340
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
341 342 343
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
344
                size_values = _const_weight_or_none(val_sizes)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
406 407
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
408
                    })
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
424
                return
S
SunAhong1993 已提交
425
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
426 427 428 429 430 431 432 433 434 435 436 437
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
438

S
SunAhong1993 已提交
439
        mode = node.get_attr('mode', 'nearest')
440 441 442 443 444
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
445 446
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
447 448
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
449 450 451 452 453 454
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
455 456 457
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
458
            outputs=[node.name],
S
SunAhong1993 已提交
459
            **attrs)
460

W
wjj19950828 已提交
461 462 463 464 465
    @print_mapping_info
    def CumSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = self.graph.get_input_node(node, idx=1, copy=True)
        axis_values = _const_weight_or_none(axis)
W
wjj19950828 已提交
466
        assert axis_values is not None, 'Axis only support constant tensor!'
W
wjj19950828 已提交
467 468 469 470 471 472 473
        layer_attrs = {'axis': axis_values}
        self.paddle_graph.add_layer(
            'paddle.cumsum',
            inputs={"x": val_x.name},
            outputs=[node.name],
            **layer_attrs)

S
SunAhong1993 已提交
474 475 476 477 478 479 480
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
481 482
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
483 484 485 486
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
487 488
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
489
            min=0.0,
490 491
            max=1.0)

S
SunAhong1993 已提交
492 493 494 495 496 497 498 499
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
500 501 502 503
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
504 505 506 507 508 509 510 511 512 513

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
514 515 516 517 518 519
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
520 521 522 523 524 525 526 527 528 529 530 531 532 533
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
534 535 536 537 538
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
539
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
540 541
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
542
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
543 544 545
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
561
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
562 563 564
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
565 566 567 568 569 570
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
571 572 573 574 575 576 577 578
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
579
        mode = node.get_attr('mode', 'constant')
580 581
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
582 583 584
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
585
        assume_pad = False
S
SunAhong1993 已提交
586 587
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
588 589 590
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
591
        else:
S
fix  
SunAhong1993 已提交
592 593 594
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
595 596
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
597
            if len(pads) == 10 and sum(pads) == 0:
598
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
599
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
600
                if data_shape:
601 602
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
603
                if output_shape:
604 605
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
606 607 608 609
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
610
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
611 612 613
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
614 615
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
616
                    if output_shape:
617 618
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
619 620 621
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
622 623
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
624 625
                        layer_attrs['pad'] = paddings
                    else:
626 627
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
628
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
629
                if data_shape:
630 631
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
632
                if output_shape:
633 634
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
635
                if assume_pad:
S
for pad  
SunAhong1993 已提交
636
                    paddle_op = 'paddle.nn.Pad2D'
W
wjj19950828 已提交
637
                    # x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
S
fix  
SunAhong1993 已提交
638
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
639
                        (2, -1)).transpose().astype("int32")
W
wjj19950828 已提交
640 641
                    if mode == 'constant':
                        paddings = paddings.flatten().tolist()
S
for pad  
SunAhong1993 已提交
642 643
                        layer_attrs['padding'] = paddings
                    else:
W
wjj19950828 已提交
644 645 646 647 648 649 650 651 652 653
                        paddings = np.flip(paddings, axis=0).flatten().tolist()
                        if sum(paddings[:4]) == 0:
                            paddings = paddings[4:]
                            layer_attrs['padding'] = paddings
                        else:
                            layer_attrs["pad"] = paddings
                            paddle_op = "custom_layer:PadAllDim4WithOneInput"
                else:
                    paddle_op = 'paddle.nn.functional.pad'
                    layer_attrs["pad"] = np.array(pads).tolist()
S
SunAhong1993 已提交
654
            else:
W
wjj19950828 已提交
655
                pad_data_temp = pads[0::2]
656
                pad_data_all = []
W
wjj19950828 已提交
657 658 659
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
660 661 662 663 664 665 666 667 668

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
669
            self.paddle_graph.add_layer(
670 671 672 673
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
674
                **layer_attrs)
S
fix  
SunAhong1993 已提交
675
            if not op_independent:
S
SunAhong1993 已提交
676
                return node.name + '_paded'
S
SunAhong1993 已提交
677
        else:
S
fix  
SunAhong1993 已提交
678 679
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
680
                if data_shape:
681 682
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
683
                if output_shape:
684 685
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
686 687 688 689 690 691 692 693
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
694 695 696
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
697 698 699 700 701 702
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
703 704
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
705
                    if output_shape:
706 707
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
708 709 710
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
711 712 713 714
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
715 716 717 718 719 720
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
721 722
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
723
                if output_shape:
724 725
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
726 727
                if assume_pad:
                    self.paddle_graph.add_layer(
728 729 730 731
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
732 733 734
                        value=value,
                        mode=string(mode))
            else:
735
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
736 737
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
738 739 740 741 742

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
W
wjj19950828 已提交
743 744 745 746 747 748 749 750 751 752
        if axes is None:
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1])
W
wjj19950828 已提交
753 754 755
        else:
            self.paddle_graph.add_layer(
                'paddle.unsqueeze',
W
wjj19950828 已提交
756 757
                inputs={"x": val_x.name},
                axis=axes,
W
wjj19950828 已提交
758
                outputs=[node.name])
S
SunAhong1993 已提交
759 760 761 762 763 764 765 766

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
767 768 769
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
791
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
792 793 794 795
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
796 797
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
798
                outputs=[node.name],
S
SunAhong1993 已提交
799 800 801 802 803
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
804
            self.weights[node.name] = value
S
SunAhong1993 已提交
805 806 807
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
808
                outputs=[node.name],
S
SunAhong1993 已提交
809
                shape=shape,
S
SunAhong1993 已提交
810
                attr=string(node.name),
S
SunAhong1993 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
825
        output_name = node.name
S
SunAhong1993 已提交
826 827 828 829 830
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
831 832
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
833 834 835 836 837
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
838
        if dim == 3:
S
SunAhong1993 已提交
839 840 841 842 843 844
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
845 846 847
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
848
        self.paddle_graph.add_layer(
849 850 851
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
852 853 854 855 856 857 858
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
859
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
873
        self.paddle_graph.add_layer(
874 875
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
876
        self.paddle_graph.add_layer(
877
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
878

Y
yeliang2258 已提交
879 880 881 882 883 884 885 886
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
887 888 889 890
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
W
wjj19950828 已提交
891
        indices_values = _const_weight_or_none(indices, necessary=True)
W
wjj19950828 已提交
892 893
        if isinstance(indices_values, np.ndarray):
            indices_values = indices_values.tolist()
S
SunAhong1993 已提交
894
        indices_shape = indices.out_shapes[0]
W
wjj19950828 已提交
895
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
896
        axis = node.get_attr('axis', 0)
W
wjj19950828 已提交
897 898 899
        if len(indices_shape) == 1 or \
            (indices_values is not None and isinstance(indices_values, int)) or \
            (indices_values is not None and len(indices_values) == 1):
S
SunAhong1993 已提交
900 901
            self.paddle_graph.add_layer(
                'paddle.gather',
W
wjj19950828 已提交
902
                inputs={'x': val_x.name,
S
SunAhong1993 已提交
903
                        'index': indices.name},
904
                outputs=[node.name],
W
wjj19950828 已提交
905
                axis=axis)
W
wjj19950828 已提交
906 907 908 909 910 911 912
            # deal with indice is scalar(0D) Tensor
            if isinstance(indices_values, int) and len(val_x_shape) > 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
                    inputs={'x': node.name},
                    outputs=[node.name],
                    axis=[axis])
W
wjj19950828 已提交
913 914 915
        else:
            # if val_x is DataNode, convert gather to embedding
            if axis == 0 and isinstance(val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
916
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
917 918
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
919
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
920
                    outputs=[indices_cast],
S
SunAhong1993 已提交
921 922
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
923
                output_name = node.name
S
SunAhong1993 已提交
924
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
925
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
926 927 928 929
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
W
wjj19950828 已提交
930 931
                    num_embeddings=val_x_shape[0],
                    embedding_dim=val_x_shape[1])
S
SunAhong1993 已提交
932 933 934
            else:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
935
                    inputs={"x": indices.name},
W
wjj19950828 已提交
936 937 938
                    outputs=[indices.name + "_reshape"],
                    shape=[-1])
                gather_1d = node.name + '_1D'
S
SunAhong1993 已提交
939 940
                self.paddle_graph.add_layer(
                    'paddle.gather',
W
wjj19950828 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
                    inputs={
                        'x': val_x.name,
                        'index': indices.name + "_reshape"
                    },
                    outputs=[gather_1d],
                    axis=axis)
                # if shape is known
                if len(indices_shape) != 0 and len(val_x_shape) != 0:
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=val_x_shape[:axis] + indices_shape +
                        val_x_shape[axis + 1:])
                else:
                    all_shape_name = list()
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": val_x.name},
                        outputs=[val_x.name + "_shape"])
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": indices.name},
                        outputs=[indices.name + "_shape"])
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_start"],
                        axes=[0],
                        starts=[0],
                        ends=[axis])
                    all_shape_name.append(val_x.name + "_shape_slice_start")
                    all_shape_name.append(indices.name + "_shape")
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_end"],
                        axes=[0],
                        starts=[axis + 1],
                        ends=[2147483647])
                    all_shape_name.append(val_x.name + "_shape_slice_end")
                    self.paddle_graph.add_layer(
                        'paddle.concat',
                        inputs={"x": all_shape_name},
                        outputs=[node.name + "_all_shape"],
                        axis=0)
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=node.name + "_all_shape")
S
SunAhong1993 已提交
992 993 994 995 996 997 998 999 1000

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1001 1002 1003 1004 1005
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1006
                outputs=[node.name])
S
SunAhong1993 已提交
1007
        else:
S
SunAhong1993 已提交
1008
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1009 1010 1011
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1012 1013
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1014 1015
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1016
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1017 1018
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1019
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1020 1021 1022 1023 1024
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1025 1026
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1027 1028
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1029 1030
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1031 1032 1033
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1034
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1035 1036 1037 1038 1039 1040 1041
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1042
                    'index': indices.name,
S
SunAhong1993 已提交
1043 1044 1045
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1046
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1047 1048 1049
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1050
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1051 1052 1053
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1054
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1055 1056 1057 1058 1059 1060
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1061
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1062 1063
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1064
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1065 1066 1067 1068 1069 1070 1071
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1072
                outputs=[node.name])
S
SunAhong1993 已提交
1073 1074 1075 1076 1077 1078 1079

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1080 1081 1082 1083 1084
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1085 1086 1087
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1088
            outputs=[node.name],
S
SunAhong1993 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1100 1101
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1102
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1103 1104 1105 1106 1107
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1108
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1109 1110
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1111 1112
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1113
                steps = _const_weight_or_none(steps).tolist()
1114

S
SunAhong1993 已提交
1115 1116
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1117 1118
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1119
            }
S
SunAhong1993 已提交
1120
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1121 1122 1123
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1124 1125
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1126 1127 1128 1129
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1130

S
SunAhong1993 已提交
1131 1132 1133 1134 1135 1136 1137
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1138
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1139 1140
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1141
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1142 1143 1144 1145
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1146
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1147 1148
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1149 1150
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1151
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1152 1153 1154 1155 1156 1157 1158
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1159 1160 1161 1162
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1163 1164 1165 1166 1167 1168 1169 1170
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1171 1172 1173
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1174 1175 1176
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1177 1178 1179
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1194
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1195
            self.paddle_graph.add_layer(
1196 1197
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1198
                outputs=[node.name],
S
SunAhong1993 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1213

S
SunAhong1993 已提交
1214
            self.paddle_graph.add_layer(
1215 1216 1217
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1218 1219
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1235 1236 1237 1238 1239 1240
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1366 1367 1368 1369 1370 1371
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1381
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1397
        else:
Y
yeliang2258 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1409
            else:
Y
yeliang2258 已提交
1410
                outputs_list.append(node.name)
W
wjj19950828 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
            if len(split) > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1435 1436
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1437 1438 1439 1440 1441
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1442 1443
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1444 1445 1446 1447 1448 1449
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1450 1451
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1452
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1453 1454 1455 1456 1457 1458
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1459 1460
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1461 1462
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1463
                outputs=[node.name])
S
SunAhong1993 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1478 1479 1480
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1481 1482 1483 1484 1485
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1486 1487 1488 1489
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1513 1514 1515 1516 1517
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1518
        layer_attrs = {
S
SunAhong1993 已提交
1519 1520 1521
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1522 1523 1524 1525
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1526 1527 1528
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1529 1530 1531 1532 1533 1534 1535 1536
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1537
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1538 1539 1540 1541 1542
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1543 1544 1545
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1546 1547 1548 1549 1550
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1551
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1563 1564
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1565
            outputs=[node.name],
S
SunAhong1993 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1578
        val_mm = node.name + '_mm'
1579
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1590
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1591 1592 1593

        if beta != 0:
            if beta == 1.:
1594
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1595
                self.paddle_graph.add_layer(
1596
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1597
            else:
S
SunAhong1993 已提交
1598
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1599 1600
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1601
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1602 1603 1604 1605
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1606
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1607 1608 1609 1610 1611

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1612 1613 1614 1615
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1616
        }
1617 1618
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1619 1620 1621 1622

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1623 1624
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1625 1626
            }
            self.paddle_graph.add_layer(
1627
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1628 1629 1630 1631 1632 1633 1634

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1635
        inputs_dict = {"x": val_x.name, "y": val_y.name}
W
wjj19950828 已提交
1636 1637
        if len(y_shape) != 0 and y_shape[0] == 1 and len(
                x_shape) != 0 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1638
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1639 1640
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1641
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1642 1643 1644 1645
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1646
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1647 1648
        else:
            self.paddle_graph.add_layer(
1649
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1650 1651 1652 1653

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1654
        output_name = node.name
S
SunAhong1993 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1687

S
SunAhong1993 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1698 1699 1700
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1701 1702 1703 1704 1705
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1706 1707 1708 1709
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1710
        self.paddle_graph.add_layer(
1711
            "paddle.transpose",
S
SunAhong1993 已提交
1712
            inputs={"x": val_x.name},
1713
            outputs=[node.name],
S
SunAhong1993 已提交
1714 1715 1716 1717 1718
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1719
        output_name = node.name
S
SunAhong1993 已提交
1720 1721 1722 1723 1724 1725
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1726
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1727 1728
            mode = 'all'

S
SunAhong1993 已提交
1729 1730 1731
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1732 1733
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1734 1735 1736 1737
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1738 1739
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1740 1741 1742
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1743 1744
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1745
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1746 1747
            self.paddle_graph.add_layer(
                "paddle.multiply",
1748 1749
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1750 1751 1752
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1753 1754 1755 1756
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1757
                outputs=[output_name])
S
SunAhong1993 已提交
1758
        else:
S
fix  
SunAhong1993 已提交
1759
            if mode == 'channel':
S
SunAhong1993 已提交
1760
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1761 1762
                if slope_data is None:
                    self.paddle_graph.add_layer(
1763 1764
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1765 1766 1767
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1768
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1769
                        inputs={"x": val_x.name,
1770
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1771 1772
                        outputs=[node.name])
                    return
C
Channingss 已提交
1773
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1774
                if len(shape_slope) > 1:
1775 1776
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1777 1778 1779
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1780
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1781
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1782
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1783
            self.paddle_graph.add_layer(
1784 1785 1786
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1787
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1788 1789 1790 1791 1792 1793 1794 1795

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1796 1797
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1798 1799 1800
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1801 1802 1803
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1804 1805 1806 1807 1808 1809 1810 1811
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1812 1813 1814
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1815 1816 1817 1818 1819 1820 1821

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1822 1823
            inputs={'x': val_x.name,
                    'y': val_y.name},
1824
            outputs=[node.name])
S
SunAhong1993 已提交
1825 1826 1827 1828 1829 1830 1831

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1832
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1833 1834
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1835
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1836 1837 1838 1839 1840 1841 1842
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1843
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1844 1845
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1846
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1847 1848
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1849
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1850 1851
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1852
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1853 1854
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1855
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1856 1857
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1858
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1859 1860 1861 1862 1863 1864 1865
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1866
            outputs=[node.name])
S
SunAhong1993 已提交
1867 1868 1869 1870 1871 1872 1873

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1874 1875
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1876
                outputs=[val_x.name])
S
SunAhong1993 已提交
1877 1878
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1879
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1880
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1881 1882 1883
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1884 1885
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1886
                outputs=[val_x.name])
S
SunAhong1993 已提交
1887 1888
            self.paddle_graph.add_layer(
                "paddle.split",
1889
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1890
                outputs=[val_x.name],
S
SunAhong1993 已提交
1891 1892 1893
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1894
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1895 1896 1897 1898 1899

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1900
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1901 1902 1903 1904 1905 1906 1907 1908

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1909
            repeats = val_repeats.name
S
SunAhong1993 已提交
1910 1911 1912 1913
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1914
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1915
                    dtype=string("int32"))
1916
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1917 1918 1919 1920

        elif isinstance(repeats, int):
            repeats = [repeats]

1921 1922 1923
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1924 1925
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1926
            "name": string(node.name),
S
SunAhong1993 已提交
1927 1928
        }
        self.paddle_graph.add_layer(
1929 1930 1931 1932
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1933 1934 1935 1936

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1937
        output_name = node.name
S
SunAhong1993 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1962

S
SunAhong1993 已提交
1963 1964 1965 1966 1967 1968 1969
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1970 1971 1972
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1973 1974 1975 1976 1977
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1978
        output_name = node.name
S
SunAhong1993 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1992 1993 1994
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1995 1996
            output_size=output_shape[2:])

Y
yeliang2258 已提交
1997 1998
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
1999
        import paddle
Y
yeliang2258 已提交
2000
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2090
        self.paddle_graph.add_layer(
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2132 2133
            outputs=[node.name])

S
SunAhong1993 已提交
2134 2135 2136
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2137
        output_name = node.name
S
SunAhong1993 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2151 2152 2153
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2154 2155 2156 2157
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2158
        output_name = node.name
S
SunAhong1993 已提交
2159 2160
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2161 2162 2163 2164 2165 2166 2167 2168

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2196
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2225
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2226 2227
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2228 2229 2230 2231 2232 2233
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2234
        if has_bias:
C
Channingss 已提交
2235 2236
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2237 2238 2239 2240 2241 2242 2243
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2244 2245
        else:
            layer_attrs["bias_attr"] = False
2246 2247
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2248 2249 2250 2251
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2252 2253 2254
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2255
                shape=input_shape)
S
SunAhong1993 已提交
2256
        self.paddle_graph.add_layer(
2257 2258 2259
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2260 2261 2262 2263
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2264
        output_name = node.name
S
SunAhong1993 已提交
2265 2266
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2267 2268 2269 2270 2271 2272 2273 2274

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2286
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2287 2288 2289 2290 2291 2292 2293

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

W
wjj19950828 已提交
2294 2295
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2296

W
wjj19950828 已提交
2297
        if len(output_size) != 0:
W
wjj19950828 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2317

W
wjj19950828 已提交
2318 2319 2320 2321 2322 2323 2324 2325
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2326

S
fix  
SunAhong1993 已提交
2327
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2328
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2350
        layer_attrs = {
2351
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2352
            "out_channels": num_out_channels * num_groups,
2353
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2354 2355 2356
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2357
            "groups": num_groups,
2358 2359 2360 2361 2362 2363
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2364 2365
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2366
        if val_b is not None:
2367 2368 2369 2370 2371
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2372 2373
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2374
        self.paddle_graph.add_layer(
2375
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2376
            inputs=inputs_dict,
2377
            outputs=layer_outputs,
S
SunAhong1993 已提交
2378
            **layer_attrs)
2379

S
fix  
SunAhong1993 已提交
2380 2381 2382 2383 2384
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2385
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2386
        self.paddle_graph.add_layer(
2387 2388
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2389
            outputs=[node.name],
C
Channingss 已提交
2390 2391 2392
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2393 2394 2395
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2396
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2397 2398 2399 2400
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2401
            dtype=string('int64'))
S
SunAhong1993 已提交
2402
        self.paddle_graph.add_layer(
2403 2404
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2405 2406 2407
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2408 2409
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2410 2411
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2412 2413
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2414
        self.paddle_graph.add_layer(
2415
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2416 2417
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2418 2419
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2420 2421
                outputs=[node.name],
                dtype=string(node.dtype))
2422

S
SunAhong1993 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2433 2434 2435 2436 2437 2438
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2439 2440
            outputs=layer_outputs,
            axis=axis)
2441

S
SunAhong1993 已提交
2442 2443 2444 2445
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2446
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2447

2448 2449
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2450 2451 2452 2453 2454 2455
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2456
        have_bias = False
C
Channingss 已提交
2457
        if input_nums > 3 and node.layer.input[3] != '':
2458 2459
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2460
            have_bias = True
C
Channingss 已提交
2461 2462
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2463 2464
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2465 2466
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2467 2468
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2469 2470 2471 2472
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2473
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2474 2475
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2476 2477
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2478 2479 2480 2481
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2482
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2483 2484

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2485
        _rename_or_remove_weight(self.weights, input_weight.name)
2486
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2487 2488
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2489
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2490
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2491
        _rename_or_remove_weight(self.weights, bias.name)
2492 2493
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2494 2495 2496 2497 2498 2499

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2500
            slices = [w[:, x * n:y * n] for x, y in intervals]
2501
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2502

2503 2504 2505 2506
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2507

C
Channingss 已提交
2508
        weights = transform_weight_with_bias(
C
Channingss 已提交
2509 2510 2511 2512 2513
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2514
        yh_out = node.output(1)
C
Channingss 已提交
2515
        yc_out = node.output(2)
2516
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2531
        if direction == 'backward':
2532 2533 2534
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2535
        else:
C
Channingss 已提交
2536 2537 2538
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2539

C
Channingss 已提交
2540
        self.paddle_graph.add_layer(
2541 2542 2543 2544 2545
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2546 2547 2548 2549
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2550
            direction=string(direction),
C
Channingss 已提交
2551 2552 2553 2554 2555 2556
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2557
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2558 2559 2560 2561
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2562 2563
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2564 2565 2566 2567
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2568 2569 2570 2571 2572 2573
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2574 2575
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2576 2577 2578 2579
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2580
        self.paddle_graph.add_layer(
2581
            "paddle.topk",
S
SunAhong1993 已提交
2582
            inputs={"x": val_x.name,
2583 2584 2585 2586 2587
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2588
            **layer_attrs)
2589

S
add lrn  
SunAhong1993 已提交
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2600
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2601
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2602
            "paddle.nn.LocalResponseNorm",
2603 2604
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2605
            **layer_attrs)
2606

S
SunAhong1993 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2619
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2620 2621 2622 2623
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2624
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2625 2626 2627 2628
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2629
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2630 2631 2632 2633 2634
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2635
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2636 2637 2638 2639
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2640
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2641 2642 2643 2644
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
W
wjj19950828 已提交
2656 2657 2658
        layer_attrs["keep_top_k"] = -1
        layer_attrs["nms_threshold"] = 0.0
        layer_attrs["score_threshold"] = 0.0
2659 2660 2661
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
W
wjj19950828 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
            max_output_boxes_per_class = _const_weight_or_none(
                max_output_boxes_per_class)
            if len(scores.out_shapes[0]) != 0:
                num_classes = scores.out_shapes[0][1]
            else:
                num_classes = 1
            if max_output_boxes_per_class is not None:
                max_output_boxes_per_class = max_output_boxes_per_class.tolist()
                if isinstance(max_output_boxes_per_class, int):
                    layer_attrs[
                        "keep_top_k"] = max_output_boxes_per_class * num_classes
                else:
                    layer_attrs["keep_top_k"] = max_output_boxes_per_class[
                        0] * num_classes
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)