opset.py 106.0 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
S
SunAhong1993 已提交
125 126
    }

S
SunAhong1993 已提交
127 128 129
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
130 131 132
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
133
                    axes=None, keepdims=True)
134 135 136 137
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
138
                    axes=None, keepdim=True)
139 140 141 142
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
143
                    axes=None, keepdim=True)
144 145 146 147
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
148
                    axes=None, keepdim=True)
149
        ],
S
SunAhong1993 已提交
150 151
        # active function
        'Relu': ['paddle.nn.ReLU'],
152 153 154 155 156 157 158 159 160 161
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
162 163 164
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
165 166 167 168
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
169
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
170
        'Log': ['paddle.log'],
171 172 173
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
174 175 176 177
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
178 179
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
180 181 182 183 184 185 186 187 188
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
189
        self.done_weight_list = list()
190 191 192
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
193 194 195 196 197 198

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
214
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
215 216
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
217
            output_name = node.name
S
SunAhong1993 已提交
218
            layer_outputs = [op_name, output_name]
219

S
SunAhong1993 已提交
220 221
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
222
                inputs={"x": input.name},
S
SunAhong1993 已提交
223 224 225 226 227
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
228 229
                inputs={"x": input.name},
                outputs=[node.name],
230 231
                **layer_attrs)

S
SunAhong1993 已提交
232 233 234 235 236
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
237
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
238
        self.paddle_graph.add_layer(
239
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
240 241 242 243 244 245 246 247 248 249 250 251

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
252
            outputs=[node.name],
S
SunAhong1993 已提交
253 254
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
255 256 257 258 259 260 261

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
262

S
fix  
SunAhong1993 已提交
263
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
264
            self.paddle_graph.add_layer(
265 266
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
267
                outputs=[node.name],
S
SunAhong1993 已提交
268 269 270 271
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
272
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
273 274 275
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
276
                outputs=[node.name],
S
SunAhong1993 已提交
277
                shape=shape,
S
SunAhong1993 已提交
278
                attr=string(node.name),
S
SunAhong1993 已提交
279
                dtype=string(dtype),
280
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
297
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
298
        attrs = dict()
S
SunAhong1993 已提交
299 300 301 302
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
303
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
304
                # which is the same as the rank of input.
305 306
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
307 308 309
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
310
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
311
                # which is the same as the rank of input.
312 313
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
314 315 316
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
317
                size_values = _const_weight_or_none(val_sizes)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                val_x_shape = val_x.out_shapes[0]
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
380 381
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
382
                    })
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
398
                return
S
SunAhong1993 已提交
399
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
400 401 402 403 404 405 406 407 408 409 410 411
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
412

S
SunAhong1993 已提交
413
        mode = node.get_attr('mode', 'nearest')
414 415 416 417 418
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
419 420
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
421 422 423
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
424 425 426 427 428 429
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
430 431 432
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
433
            outputs=[node.name],
S
SunAhong1993 已提交
434
            **attrs)
435

S
SunAhong1993 已提交
436 437 438 439 440 441 442
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
443 444
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
445 446 447 448
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
449 450
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
451
            min=0.0,
452 453
            max=1.0)

S
SunAhong1993 已提交
454 455 456 457 458 459 460 461
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
462 463 464 465
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
466 467 468 469 470 471 472 473 474 475

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
476 477 478 479 480 481
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
482 483 484 485 486 487 488 489 490 491 492 493 494 495
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
496 497 498 499 500
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
501
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
502 503
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
504
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
505 506 507
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
523
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
524 525 526
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
527 528 529 530 531 532
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
533 534 535 536 537 538 539 540
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
541
        mode = node.get_attr('mode', 'constant')
542 543
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
544 545 546
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
547
        assume_pad = False
S
SunAhong1993 已提交
548 549
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
550 551 552
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
553
        else:
S
fix  
SunAhong1993 已提交
554 555 556
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
557 558
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
559
            if len(pads) == 10 and sum(pads) == 0:
560
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
561
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
562
                if data_shape:
563 564
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
565
                if output_shape:
566 567
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
568 569 570 571
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
572
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
573 574 575
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
576 577
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
578
                    if output_shape:
579 580
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
581 582 583
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
584 585
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
586 587
                        layer_attrs['pad'] = paddings
                    else:
588 589
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
590
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
591
                if data_shape:
592 593
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
594
                if output_shape:
595 596
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
597
                if assume_pad:
S
for pad  
SunAhong1993 已提交
598
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
599
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
600 601 602 603 604 605 606 607
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
608
            else:
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
                pad_data = node.get_attr('pads')
                pad_data1 = pad_data[0::2]
                pad_data_all = []
                for i in range(len(pad_data1)):
                    pad_data_all.append(pad_data[i])
                    pad_data_all.append(pad_data[len(pad_data1) + i])

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
624
            self.paddle_graph.add_layer(
625 626 627 628
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
629
                **layer_attrs)
S
fix  
SunAhong1993 已提交
630
            if not op_independent:
S
SunAhong1993 已提交
631
                return node.name + '_paded'
S
SunAhong1993 已提交
632
        else:
S
fix  
SunAhong1993 已提交
633 634
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
635
                if data_shape:
636 637
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
638
                if output_shape:
639 640
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
641 642 643 644 645 646 647 648
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
649 650 651
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
652 653 654 655 656 657
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
658 659
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
660
                    if output_shape:
661 662
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
663 664 665
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
666 667 668 669
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
670 671 672 673 674 675
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
676 677
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
678
                if output_shape:
679 680
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
681 682
                if assume_pad:
                    self.paddle_graph.add_layer(
683 684 685 686
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
687 688 689
                        value=value,
                        mode=string(mode))
            else:
690
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
691 692
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
693 694 695 696 697

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
698 699
        if axes is None:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
Y
fix  
yeliang2258 已提交
700 701 702 703 704 705 706
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
S
SunAhong1993 已提交
707
        else:
Y
fix  
yeliang2258 已提交
708 709 710 711 712 713 714 715 716 717 718 719
            if isinstance(axes, list) or isinstance(axes, tuple):
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name},
                    axis=axes,
                    outputs=[node.name])
            else:
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name,
                            "axis": axes.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
720 721 722 723 724 725 726 727

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
728 729 730
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
752
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
753 754 755 756
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
757 758
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
759
                outputs=[node.name],
S
SunAhong1993 已提交
760 761 762 763 764
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
765
            self.weights[node.name] = value
S
SunAhong1993 已提交
766 767 768
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
769
                outputs=[node.name],
S
SunAhong1993 已提交
770
                shape=shape,
S
SunAhong1993 已提交
771
                attr=string(node.name),
S
SunAhong1993 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
786
        output_name = node.name
S
SunAhong1993 已提交
787 788 789 790 791
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
792 793
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
794 795 796 797 798
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
799
        if dim == 3:
S
SunAhong1993 已提交
800 801 802 803 804 805
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
806 807 808
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
809
        self.paddle_graph.add_layer(
810 811 812
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
813 814 815 816 817 818 819
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
820
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
834
        self.paddle_graph.add_layer(
835 836
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
837
        self.paddle_graph.add_layer(
838
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
839

Y
yeliang2258 已提交
840 841 842 843 844 845 846 847
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
848 849 850 851 852 853 854 855 856 857 858 859
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
860 861 862
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
863 864
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
Y
yeliang2258 已提交
865 866 867 868 869
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={"x": indices.name},
                        outputs=[indices.name],
                        shape=[-1, ])
S
SunAhong1993 已提交
870
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
871 872
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
873 874
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
875 876 877 878
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
879
                        outputs=[node.name],
S
SunAhong1993 已提交
880 881 882 883
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
884 885 886
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
887 888 889
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
890
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
891 892
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
893
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
894 895 896 897 898
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
899 900
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
901 902 903
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
904
            self.paddle_graph.add_layer(
905 906 907
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
S
SunAhong1993 已提交
908
                perm=new_perm)
S
SunAhong1993 已提交
909 910 911
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
912 913
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
914 915 916 917
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
918
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
919 920
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
921
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
922
                    outputs=[indices_cast],
S
SunAhong1993 已提交
923 924
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
925
                output_name = node.name
S
SunAhong1993 已提交
926
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
927
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
928 929 930 931
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
932 933
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
934 935 936
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
937
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
938 939
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
940
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
941 942 943 944 945 946
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
947
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
948
                            'index': indices_reshape},
S
SunAhong1993 已提交
949
                    outputs=[node.name])
S
SunAhong1993 已提交
950 951 952 953 954 955 956 957
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
958 959
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
960 961 962 963
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
964
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
965 966
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
967
                inputs={"x": indices.name},
S
SunAhong1993 已提交
968 969 970 971 972
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
973
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
974 975
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
976
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
977 978 979 980 981 982
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
983 984
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
985 986 987
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
988 989
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
990
                inputs={"x": node.name},
S
SunAhong1993 已提交
991
                outputs=[input_transpose],
S
SunAhong1993 已提交
992 993
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
994 995 996 997 998 999 1000 1001 1002
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
1003
                outputs=[node.name],
S
SunAhong1993 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1014 1015 1016 1017 1018
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1019
                outputs=[node.name])
S
SunAhong1993 已提交
1020
        else:
S
SunAhong1993 已提交
1021
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1022 1023 1024
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1025 1026
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1027 1028
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1029
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1030 1031
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1032
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1033 1034 1035 1036 1037
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1038 1039
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1040 1041
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1042 1043
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1044 1045 1046
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1047
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1048 1049 1050 1051 1052 1053 1054
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1055
                    'index': indices.name,
S
SunAhong1993 已提交
1056 1057 1058
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1059
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1060 1061 1062
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1063
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1064 1065 1066
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1067
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1068 1069 1070 1071 1072 1073
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1074
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1075 1076
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1077
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1078 1079 1080 1081 1082 1083 1084
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1085
                outputs=[node.name])
S
SunAhong1993 已提交
1086 1087 1088 1089 1090 1091 1092

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1093 1094 1095 1096 1097
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1098 1099 1100
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1101
            outputs=[node.name],
S
SunAhong1993 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1113 1114
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1115
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1116 1117 1118 1119 1120
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1121
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1122 1123
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1124 1125
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1126
                steps = _const_weight_or_none(steps).tolist()
1127

S
SunAhong1993 已提交
1128 1129
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1130 1131
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1132
            }
S
SunAhong1993 已提交
1133
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1134 1135 1136
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1137 1138
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1139 1140 1141 1142
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1143

S
SunAhong1993 已提交
1144 1145 1146 1147 1148 1149 1150
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1151
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1152 1153
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1154
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1155 1156 1157 1158
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1159
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1160 1161
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1162 1163
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1164
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1165 1166 1167 1168 1169 1170 1171
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1172 1173 1174 1175
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1176 1177 1178 1179 1180 1181 1182 1183
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1184 1185 1186
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1187 1188 1189
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1190 1191 1192
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1207
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1208
            self.paddle_graph.add_layer(
1209 1210
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1211
                outputs=[node.name],
S
SunAhong1993 已提交
1212 1213
                **layer_attrs)

Y
yeliang2258 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1236

S
SunAhong1993 已提交
1237
            self.paddle_graph.add_layer(
1238 1239 1240
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1241 1242
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1258 1259 1260 1261 1262 1263
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1399 1400 1401 1402 1403 1404
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1414
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1430
        else:
Y
yeliang2258 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1442
            else:
Y
yeliang2258 已提交
1443 1444 1445 1446 1447 1448
                outputs_list.append(node.name)
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_x.name},
                outputs=outputs_list,
                **layer_attrs)
S
SunAhong1993 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1461 1462
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1463 1464 1465 1466 1467
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1468 1469
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1470 1471 1472 1473 1474 1475
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1476 1477
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1478
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1479 1480 1481 1482 1483 1484
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1485 1486
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1487 1488
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1489
                outputs=[node.name])
S
SunAhong1993 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1504 1505 1506
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1507 1508 1509 1510 1511
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1512 1513 1514 1515
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1539 1540 1541 1542 1543
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1544
        layer_attrs = {
S
SunAhong1993 已提交
1545 1546 1547
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1548 1549 1550 1551
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1552 1553 1554
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1555 1556 1557 1558 1559 1560 1561 1562
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1563
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1564 1565 1566 1567 1568
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1569 1570 1571
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1572 1573 1574 1575 1576
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1577
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1589 1590
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1591
            outputs=[node.name],
S
SunAhong1993 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1604
        val_mm = node.name + '_mm'
1605
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1616
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1617 1618 1619

        if beta != 0:
            if beta == 1.:
1620
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1621
                self.paddle_graph.add_layer(
1622
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1623
            else:
S
SunAhong1993 已提交
1624
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1625 1626
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1627
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1628 1629 1630 1631
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1632
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1633 1634 1635 1636 1637

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1638 1639 1640 1641
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1642
        }
1643 1644
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1645 1646 1647 1648

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1649 1650
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1651 1652
            }
            self.paddle_graph.add_layer(
1653
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1654 1655 1656 1657 1658 1659 1660

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1661
        inputs_dict = {"x": val_x.name, "y": val_y.name}
S
SunAhong1993 已提交
1662
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1663
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1664 1665
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1666
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1667 1668 1669 1670
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1671
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1672 1673
        else:
            self.paddle_graph.add_layer(
1674
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1675 1676 1677 1678

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1679
        output_name = node.name
S
SunAhong1993 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1712

S
SunAhong1993 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1723 1724 1725
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1726 1727 1728 1729 1730
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1731 1732 1733 1734
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1735
        self.paddle_graph.add_layer(
1736
            "paddle.transpose",
S
SunAhong1993 已提交
1737
            inputs={"x": val_x.name},
1738
            outputs=[node.name],
S
SunAhong1993 已提交
1739 1740 1741 1742 1743
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1744
        output_name = node.name
S
SunAhong1993 已提交
1745 1746 1747 1748 1749 1750
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1751
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1752 1753
            mode = 'all'

S
SunAhong1993 已提交
1754 1755 1756
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1757 1758
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1759 1760 1761 1762
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1763 1764
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1765 1766 1767
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1768 1769
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1770
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1771 1772
            self.paddle_graph.add_layer(
                "paddle.multiply",
1773 1774
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1775 1776 1777
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1778 1779 1780 1781
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1782
                outputs=[output_name])
S
SunAhong1993 已提交
1783
        else:
S
fix  
SunAhong1993 已提交
1784
            if mode == 'channel':
S
SunAhong1993 已提交
1785
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1786 1787
                if slope_data is None:
                    self.paddle_graph.add_layer(
1788 1789
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1790 1791 1792
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1793
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1794
                        inputs={"x": val_x.name,
1795
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1796 1797
                        outputs=[node.name])
                    return
C
Channingss 已提交
1798
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1799
                if len(shape_slope) > 1:
1800 1801
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1802 1803 1804
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1805
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1806
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1807
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1808
            self.paddle_graph.add_layer(
1809 1810 1811
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1812
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1813 1814 1815 1816 1817 1818 1819 1820

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1821 1822
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1823 1824 1825
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1826 1827 1828
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1829 1830 1831 1832 1833 1834 1835 1836
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1837 1838 1839
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1840 1841 1842 1843 1844 1845 1846

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1847 1848
            inputs={'x': val_x.name,
                    'y': val_y.name},
1849
            outputs=[node.name])
S
SunAhong1993 已提交
1850 1851 1852 1853 1854 1855 1856

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1857
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1858 1859
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1860
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1861 1862 1863 1864 1865 1866 1867
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1868
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1869 1870
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1871
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1872 1873
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1874
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1875 1876
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1877
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1878 1879
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1880
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1881 1882
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1883
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1884 1885 1886 1887 1888 1889 1890
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1891
            outputs=[node.name])
S
SunAhong1993 已提交
1892 1893 1894 1895 1896 1897 1898

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1899 1900
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1901
                outputs=[val_x.name])
S
SunAhong1993 已提交
1902 1903
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1904
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1905
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1906 1907 1908
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1909 1910
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1911
                outputs=[val_x.name])
S
SunAhong1993 已提交
1912 1913
            self.paddle_graph.add_layer(
                "paddle.split",
1914
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1915
                outputs=[val_x.name],
S
SunAhong1993 已提交
1916 1917 1918
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1919
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1920 1921 1922 1923 1924

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1925
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1926 1927 1928 1929 1930 1931 1932 1933

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1934
            repeats = val_repeats.name
S
SunAhong1993 已提交
1935 1936 1937 1938
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1939
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1940
                    dtype=string("int32"))
1941
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1942 1943 1944 1945

        elif isinstance(repeats, int):
            repeats = [repeats]

1946 1947 1948
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1949 1950
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1951
            "name": string(node.name),
S
SunAhong1993 已提交
1952 1953
        }
        self.paddle_graph.add_layer(
1954 1955 1956 1957
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1958 1959 1960 1961

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1962
        output_name = node.name
S
SunAhong1993 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1987

S
SunAhong1993 已提交
1988 1989 1990 1991 1992 1993 1994
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1995 1996 1997
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1998 1999 2000 2001 2002
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2003
        output_name = node.name
S
SunAhong1993 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2017 2018 2019
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2020 2021
            output_size=output_shape[2:])

Y
yeliang2258 已提交
2022 2023
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
2024
        import paddle
Y
yeliang2258 已提交
2025
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2115
        self.paddle_graph.add_layer(
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2157 2158
            outputs=[node.name])

S
SunAhong1993 已提交
2159 2160 2161
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2162
        output_name = node.name
S
SunAhong1993 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2176 2177 2178
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2179 2180 2181 2182
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2183
        output_name = node.name
S
SunAhong1993 已提交
2184 2185
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2186 2187 2188 2189 2190 2191 2192 2193

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2221
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2250
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2251 2252
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2253 2254 2255 2256 2257 2258
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2259
        if has_bias:
C
Channingss 已提交
2260 2261
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2262 2263 2264 2265 2266 2267 2268
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2269 2270
        else:
            layer_attrs["bias_attr"] = False
2271 2272
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2273 2274 2275 2276
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2277 2278 2279
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2280
                shape=input_shape)
S
SunAhong1993 已提交
2281
        self.paddle_graph.add_layer(
2282 2283 2284
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2285 2286 2287 2288
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2289
        output_name = node.name
S
SunAhong1993 已提交
2290 2291
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2292 2293 2294 2295 2296 2297 2298 2299

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2311
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

W
wjj19950828 已提交
2321
        if len(output_size) != 0:
W
wjj19950828 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2341

W
wjj19950828 已提交
2342 2343 2344 2345 2346 2347 2348 2349
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2350

S
fix  
SunAhong1993 已提交
2351
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2352
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2374
        layer_attrs = {
2375
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2376
            "out_channels": num_out_channels * num_groups,
2377
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2378 2379 2380
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2381
            "groups": num_groups,
2382 2383 2384 2385 2386 2387
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2388 2389
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2390
        if val_b is not None:
2391 2392 2393 2394 2395
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2396 2397
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2398
        self.paddle_graph.add_layer(
2399
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2400
            inputs=inputs_dict,
2401
            outputs=layer_outputs,
S
SunAhong1993 已提交
2402
            **layer_attrs)
2403

S
fix  
SunAhong1993 已提交
2404 2405 2406 2407 2408
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2409
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2410
        self.paddle_graph.add_layer(
2411 2412
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2413
            outputs=[node.name],
C
Channingss 已提交
2414 2415 2416
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2417 2418 2419
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2420
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2421 2422 2423 2424
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2425
            dtype=string('int64'))
S
SunAhong1993 已提交
2426
        self.paddle_graph.add_layer(
2427 2428
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2429 2430 2431
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2432 2433
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2434 2435
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2436 2437
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2438
        self.paddle_graph.add_layer(
2439
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2440 2441
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2442 2443
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2444 2445
                outputs=[node.name],
                dtype=string(node.dtype))
2446

S
SunAhong1993 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2457 2458 2459 2460 2461 2462
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2463 2464
            outputs=layer_outputs,
            axis=axis)
2465

S
SunAhong1993 已提交
2466 2467 2468 2469
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2470
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2471

2472 2473
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2474 2475 2476 2477 2478 2479
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2480
        have_bias = False
C
Channingss 已提交
2481
        if input_nums > 3 and node.layer.input[3] != '':
2482 2483
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2484
            have_bias = True
C
Channingss 已提交
2485 2486
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2487 2488
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2489 2490
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2491 2492
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2493 2494 2495 2496
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2497
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2498 2499
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2500 2501
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2502 2503 2504 2505
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2506
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2507 2508

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2509
        _rename_or_remove_weight(self.weights, input_weight.name)
2510
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2511 2512
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2513
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2514
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2515
        _rename_or_remove_weight(self.weights, bias.name)
2516 2517
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2518 2519 2520 2521 2522 2523

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2524
            slices = [w[:, x * n:y * n] for x, y in intervals]
2525
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2526

2527 2528 2529 2530
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2531

C
Channingss 已提交
2532
        weights = transform_weight_with_bias(
C
Channingss 已提交
2533 2534 2535 2536 2537
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2538
        yh_out = node.output(1)
C
Channingss 已提交
2539
        yc_out = node.output(2)
2540
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2555
        if direction == 'backward':
2556 2557 2558
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2559
        else:
C
Channingss 已提交
2560 2561 2562
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2563

C
Channingss 已提交
2564
        self.paddle_graph.add_layer(
2565 2566 2567 2568 2569
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2570 2571 2572 2573
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2574
            direction=string(direction),
C
Channingss 已提交
2575 2576 2577 2578 2579 2580
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2581
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2582 2583 2584 2585
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2586 2587
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2588 2589 2590 2591
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2592 2593 2594 2595 2596 2597
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2598 2599
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2600 2601 2602 2603
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2604
        self.paddle_graph.add_layer(
2605
            "paddle.topk",
S
SunAhong1993 已提交
2606
            inputs={"x": val_x.name,
2607 2608 2609 2610 2611
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2612
            **layer_attrs)
2613

S
add lrn  
SunAhong1993 已提交
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2624
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2625
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2626
            "paddle.nn.LocalResponseNorm",
2627 2628
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2629
            **layer_attrs)
2630

S
SunAhong1993 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2643
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2644 2645 2646 2647
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2648
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2649 2650 2651 2652
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2653
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2654 2655 2656 2657 2658
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2659
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2660 2661 2662 2663
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2664
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2665 2666 2667 2668
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2669 2670 2671 2672 2673 2674 2675 2676 2677
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
2678
        num_classes = scores.out_shapes[0][1]
2679 2680 2681 2682 2683
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
2684 2685
            layer_attrs["keep_top_k"] = _const_weight_or_none(
                max_output_boxes_per_class).tolist()[0] * num_classes
2686
        else:
2687
            layer_attrs["keep_top_k"] = 0
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        else:
            layer_attrs["nms_threshold"] = 0.0
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        else:
            layer_attrs["score_threshold"] = 0.0
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)