opset.py 107.0 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
S
SunAhong1993 已提交
125 126
    }

S
SunAhong1993 已提交
127 128 129
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
130 131 132
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
133
                    axes=None, keepdims=True)
134 135 136 137
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
138
                    axes=None, keepdim=True)
139 140 141 142
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
143
                    axes=None, keepdim=True)
144 145 146 147
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
148
                    axes=None, keepdim=True)
149
        ],
S
SunAhong1993 已提交
150 151
        # active function
        'Relu': ['paddle.nn.ReLU'],
152 153 154 155 156 157 158 159 160 161
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
162 163 164
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
165 166 167 168
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
169
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
170
        'Log': ['paddle.log'],
171 172 173
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
174 175 176 177
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
178 179
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
180 181 182 183 184 185 186 187 188
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
189
        self.done_weight_list = list()
190 191 192
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
193 194 195 196 197 198

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
214
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
215 216
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
217
            output_name = node.name
S
SunAhong1993 已提交
218
            layer_outputs = [op_name, output_name]
219

S
SunAhong1993 已提交
220 221
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
222
                inputs={"x": input.name},
S
SunAhong1993 已提交
223 224 225 226 227
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
228 229
                inputs={"x": input.name},
                outputs=[node.name],
230 231
                **layer_attrs)

S
SunAhong1993 已提交
232 233 234 235 236
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
237
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
238
        self.paddle_graph.add_layer(
239
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
240 241 242 243 244 245 246 247 248 249 250 251

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
252
            outputs=[node.name],
S
SunAhong1993 已提交
253 254
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
255 256 257 258 259 260 261

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
262

S
fix  
SunAhong1993 已提交
263
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
264
            self.paddle_graph.add_layer(
265 266
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
267
                outputs=[node.name],
S
SunAhong1993 已提交
268 269 270 271
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
272
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
273 274 275
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
276
                outputs=[node.name],
S
SunAhong1993 已提交
277
                shape=shape,
S
SunAhong1993 已提交
278
                attr=string(node.name),
S
SunAhong1993 已提交
279
                dtype=string(dtype),
280
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
297
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
298
        attrs = dict()
W
WJJ1995 已提交
299
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
300 301 302 303
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
304
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
305
                # which is the same as the rank of input.
W
WJJ1995 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
333 334 335
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
336
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
337
                # which is the same as the rank of input.
338 339
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
340 341 342
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
343
                size_values = _const_weight_or_none(val_sizes)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
405 406
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
407
                    })
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
423
                return
S
SunAhong1993 已提交
424
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
425 426 427 428 429 430 431 432 433 434 435 436
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
437

S
SunAhong1993 已提交
438
        mode = node.get_attr('mode', 'nearest')
439 440 441 442 443
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
444 445
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
446 447
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
448 449 450 451 452 453
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
454 455 456
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
457
            outputs=[node.name],
S
SunAhong1993 已提交
458
            **attrs)
459

S
SunAhong1993 已提交
460 461 462 463 464 465 466
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
467 468
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
469 470 471 472
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
473 474
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
475
            min=0.0,
476 477
            max=1.0)

S
SunAhong1993 已提交
478 479 480 481 482 483 484 485
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
486 487 488 489
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
490 491 492 493 494 495 496 497 498 499

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
500 501 502 503 504 505
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
506 507 508 509 510 511 512 513 514 515 516 517 518 519
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
520 521 522 523 524
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
525
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
526 527
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
528
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
529 530 531
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
547
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
548 549 550
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
551 552 553 554 555 556
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
557 558 559 560 561 562 563 564
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
565
        mode = node.get_attr('mode', 'constant')
566 567
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
568 569 570
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
571
        assume_pad = False
S
SunAhong1993 已提交
572 573
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
574 575 576
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
577
        else:
S
fix  
SunAhong1993 已提交
578 579 580
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
581 582
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
583
            if len(pads) == 10 and sum(pads) == 0:
584
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
585
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
586
                if data_shape:
587 588
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
589
                if output_shape:
590 591
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
592 593 594 595
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
596
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
597 598 599
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
600 601
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
602
                    if output_shape:
603 604
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
605 606 607
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
608 609
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
610 611
                        layer_attrs['pad'] = paddings
                    else:
612 613
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
614
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
615
                if data_shape:
616 617
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
618
                if output_shape:
619 620
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
621
                if assume_pad:
S
for pad  
SunAhong1993 已提交
622
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
623
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
624 625 626 627 628 629 630 631
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
632
            else:
W
wjj19950828 已提交
633
                pad_data_temp = pads[0::2]
634
                pad_data_all = []
W
wjj19950828 已提交
635 636 637
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
638 639 640 641 642 643 644 645 646

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
647
            self.paddle_graph.add_layer(
648 649 650 651
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
652
                **layer_attrs)
S
fix  
SunAhong1993 已提交
653
            if not op_independent:
S
SunAhong1993 已提交
654
                return node.name + '_paded'
S
SunAhong1993 已提交
655
        else:
S
fix  
SunAhong1993 已提交
656 657
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
658
                if data_shape:
659 660
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
661
                if output_shape:
662 663
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
664 665 666 667 668 669 670 671
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
672 673 674
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
675 676 677 678 679 680
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
681 682
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
683
                    if output_shape:
684 685
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
686 687 688
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
689 690 691 692
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
693 694 695 696 697 698
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
699 700
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
701
                if output_shape:
702 703
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
704 705
                if assume_pad:
                    self.paddle_graph.add_layer(
706 707 708 709
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
710 711 712
                        value=value,
                        mode=string(mode))
            else:
713
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
714 715
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
716 717 718 719 720

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
721 722
        if axes is None:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
Y
fix  
yeliang2258 已提交
723 724 725 726 727 728 729
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
S
SunAhong1993 已提交
730
        else:
Y
fix  
yeliang2258 已提交
731 732 733 734 735 736 737 738 739 740 741 742
            if isinstance(axes, list) or isinstance(axes, tuple):
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name},
                    axis=axes,
                    outputs=[node.name])
            else:
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name,
                            "axis": axes.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
743 744 745 746 747 748 749 750

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
751 752 753
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
775
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
776 777 778 779
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
780 781
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
782
                outputs=[node.name],
S
SunAhong1993 已提交
783 784 785 786 787
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
788
            self.weights[node.name] = value
S
SunAhong1993 已提交
789 790 791
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
792
                outputs=[node.name],
S
SunAhong1993 已提交
793
                shape=shape,
S
SunAhong1993 已提交
794
                attr=string(node.name),
S
SunAhong1993 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
809
        output_name = node.name
S
SunAhong1993 已提交
810 811 812 813 814
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
815 816
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
817 818 819 820 821
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
822
        if dim == 3:
S
SunAhong1993 已提交
823 824 825 826 827 828
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
829 830 831
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
832
        self.paddle_graph.add_layer(
833 834 835
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
836 837 838 839 840 841 842
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
843
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
857
        self.paddle_graph.add_layer(
858 859
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
860
        self.paddle_graph.add_layer(
861
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
862

Y
yeliang2258 已提交
863 864 865 866 867 868 869 870
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
871 872 873 874 875 876 877 878 879 880 881 882
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
883 884 885
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
886 887
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
Y
yeliang2258 已提交
888 889 890 891 892
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={"x": indices.name},
                        outputs=[indices.name],
                        shape=[-1, ])
S
SunAhong1993 已提交
893
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
894 895
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
896 897
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
898 899 900 901
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
902
                        outputs=[node.name],
S
SunAhong1993 已提交
903 904 905 906
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
907 908 909
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
910 911 912
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
913
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
914 915
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
916
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
917 918 919 920 921
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
922 923
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
924 925 926
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
927
            self.paddle_graph.add_layer(
928 929 930
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
S
SunAhong1993 已提交
931
                perm=new_perm)
S
SunAhong1993 已提交
932 933 934
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
935 936
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
937 938 939 940
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
941
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
942 943
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
944
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
945
                    outputs=[indices_cast],
S
SunAhong1993 已提交
946 947
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
948
                output_name = node.name
S
SunAhong1993 已提交
949
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
950
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
951 952 953 954
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
955 956
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
957 958 959
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
960
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
961 962
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
963
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
964 965 966 967 968 969
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
970
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
971
                            'index': indices_reshape},
S
SunAhong1993 已提交
972
                    outputs=[node.name])
S
SunAhong1993 已提交
973 974 975 976 977 978 979 980
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
981 982
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
983 984 985 986
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
987
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
988 989
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
990
                inputs={"x": indices.name},
S
SunAhong1993 已提交
991 992 993 994 995
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
996
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
997 998
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
999
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1000 1001 1002 1003 1004 1005
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
1006 1007
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
1008 1009 1010
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
1011 1012
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
1013
                inputs={"x": node.name},
S
SunAhong1993 已提交
1014
                outputs=[input_transpose],
S
SunAhong1993 已提交
1015 1016
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
1026
                outputs=[node.name],
S
SunAhong1993 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1037 1038 1039 1040 1041
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1042
                outputs=[node.name])
S
SunAhong1993 已提交
1043
        else:
S
SunAhong1993 已提交
1044
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1045 1046 1047
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1048 1049
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1050 1051
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1052
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1053 1054
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1055
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1056 1057 1058 1059 1060
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1061 1062
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1063 1064
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1065 1066
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1067 1068 1069
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1070
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1071 1072 1073 1074 1075 1076 1077
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1078
                    'index': indices.name,
S
SunAhong1993 已提交
1079 1080 1081
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1082
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1083 1084 1085
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1086
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1087 1088 1089
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1090
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1091 1092 1093 1094 1095 1096
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1097
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1098 1099
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1100
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1101 1102 1103 1104 1105 1106 1107
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1108
                outputs=[node.name])
S
SunAhong1993 已提交
1109 1110 1111 1112 1113 1114 1115

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1116 1117 1118 1119 1120
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1121 1122 1123
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1124
            outputs=[node.name],
S
SunAhong1993 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1136 1137
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1138
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1139 1140 1141 1142 1143
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1144
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1145 1146
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1147 1148
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1149
                steps = _const_weight_or_none(steps).tolist()
1150

S
SunAhong1993 已提交
1151 1152
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1153 1154
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1155
            }
S
SunAhong1993 已提交
1156
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1157 1158 1159
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1160 1161
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1162 1163 1164 1165
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1166

S
SunAhong1993 已提交
1167 1168 1169 1170 1171 1172 1173
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1174
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1175 1176
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1177
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1178 1179 1180 1181
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1182
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1183 1184
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1185 1186
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1187
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1188 1189 1190 1191 1192 1193 1194
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1195 1196 1197 1198
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1199 1200 1201 1202 1203 1204 1205 1206
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1207 1208 1209
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1210 1211 1212
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1213 1214 1215
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1230
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1231
            self.paddle_graph.add_layer(
1232 1233
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1234
                outputs=[node.name],
S
SunAhong1993 已提交
1235 1236
                **layer_attrs)

Y
yeliang2258 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1259

S
SunAhong1993 已提交
1260
            self.paddle_graph.add_layer(
1261 1262 1263
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1264 1265
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1281 1282 1283 1284 1285 1286
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1422 1423 1424 1425 1426 1427
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1437
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1453
        else:
Y
yeliang2258 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1465
            else:
Y
yeliang2258 已提交
1466 1467 1468 1469 1470 1471
                outputs_list.append(node.name)
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_x.name},
                outputs=outputs_list,
                **layer_attrs)
S
SunAhong1993 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1484 1485
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1486 1487 1488 1489 1490
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1491 1492
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1493 1494 1495 1496 1497 1498
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1499 1500
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1501
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1502 1503 1504 1505 1506 1507
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1508 1509
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1510 1511
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1512
                outputs=[node.name])
S
SunAhong1993 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1527 1528 1529
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1530 1531 1532 1533 1534
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1535 1536 1537 1538
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1562 1563 1564 1565 1566
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1567
        layer_attrs = {
S
SunAhong1993 已提交
1568 1569 1570
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1571 1572 1573 1574
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1575 1576 1577
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1578 1579 1580 1581 1582 1583 1584 1585
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1586
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1587 1588 1589 1590 1591
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1592 1593 1594
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1595 1596 1597 1598 1599
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1600
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1612 1613
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1614
            outputs=[node.name],
S
SunAhong1993 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1627
        val_mm = node.name + '_mm'
1628
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1639
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1640 1641 1642

        if beta != 0:
            if beta == 1.:
1643
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1644
                self.paddle_graph.add_layer(
1645
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1646
            else:
S
SunAhong1993 已提交
1647
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1648 1649
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1650
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1651 1652 1653 1654
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1655
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1656 1657 1658 1659 1660

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1661 1662 1663 1664
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1665
        }
1666 1667
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1668 1669 1670 1671

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1672 1673
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1674 1675
            }
            self.paddle_graph.add_layer(
1676
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1677 1678 1679 1680 1681 1682 1683

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1684
        inputs_dict = {"x": val_x.name, "y": val_y.name}
S
SunAhong1993 已提交
1685
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1686
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1687 1688
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1689
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1690 1691 1692 1693
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1694
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1695 1696
        else:
            self.paddle_graph.add_layer(
1697
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1698 1699 1700 1701

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1702
        output_name = node.name
S
SunAhong1993 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1735

S
SunAhong1993 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1746 1747 1748
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1749 1750 1751 1752 1753
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1754 1755 1756 1757
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1758
        self.paddle_graph.add_layer(
1759
            "paddle.transpose",
S
SunAhong1993 已提交
1760
            inputs={"x": val_x.name},
1761
            outputs=[node.name],
S
SunAhong1993 已提交
1762 1763 1764 1765 1766
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1767
        output_name = node.name
S
SunAhong1993 已提交
1768 1769 1770 1771 1772 1773
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1774
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1775 1776
            mode = 'all'

S
SunAhong1993 已提交
1777 1778 1779
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1780 1781
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1782 1783 1784 1785
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1786 1787
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1788 1789 1790
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1791 1792
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1793
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1794 1795
            self.paddle_graph.add_layer(
                "paddle.multiply",
1796 1797
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1798 1799 1800
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1801 1802 1803 1804
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1805
                outputs=[output_name])
S
SunAhong1993 已提交
1806
        else:
S
fix  
SunAhong1993 已提交
1807
            if mode == 'channel':
S
SunAhong1993 已提交
1808
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1809 1810
                if slope_data is None:
                    self.paddle_graph.add_layer(
1811 1812
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1813 1814 1815
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1816
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1817
                        inputs={"x": val_x.name,
1818
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1819 1820
                        outputs=[node.name])
                    return
C
Channingss 已提交
1821
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1822
                if len(shape_slope) > 1:
1823 1824
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1825 1826 1827
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1828
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1829
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1830
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1831
            self.paddle_graph.add_layer(
1832 1833 1834
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1835
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1836 1837 1838 1839 1840 1841 1842 1843

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1844 1845
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1846 1847 1848
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1849 1850 1851
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1852 1853 1854 1855 1856 1857 1858 1859
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1860 1861 1862
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1863 1864 1865 1866 1867 1868 1869

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1870 1871
            inputs={'x': val_x.name,
                    'y': val_y.name},
1872
            outputs=[node.name])
S
SunAhong1993 已提交
1873 1874 1875 1876 1877 1878 1879

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1880
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1881 1882
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1883
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1884 1885 1886 1887 1888 1889 1890
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1891
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1892 1893
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1894
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1895 1896
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1897
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1898 1899
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1900
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1901 1902
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1903
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1904 1905
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1906
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1907 1908 1909 1910 1911 1912 1913
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1914
            outputs=[node.name])
S
SunAhong1993 已提交
1915 1916 1917 1918 1919 1920 1921

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1922 1923
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1924
                outputs=[val_x.name])
S
SunAhong1993 已提交
1925 1926
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1927
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1928
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1929 1930 1931
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1932 1933
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1934
                outputs=[val_x.name])
S
SunAhong1993 已提交
1935 1936
            self.paddle_graph.add_layer(
                "paddle.split",
1937
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1938
                outputs=[val_x.name],
S
SunAhong1993 已提交
1939 1940 1941
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1942
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1943 1944 1945 1946 1947

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1948
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1949 1950 1951 1952 1953 1954 1955 1956

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1957
            repeats = val_repeats.name
S
SunAhong1993 已提交
1958 1959 1960 1961
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1962
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1963
                    dtype=string("int32"))
1964
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1965 1966 1967 1968

        elif isinstance(repeats, int):
            repeats = [repeats]

1969 1970 1971
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1972 1973
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1974
            "name": string(node.name),
S
SunAhong1993 已提交
1975 1976
        }
        self.paddle_graph.add_layer(
1977 1978 1979 1980
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1981 1982 1983 1984

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1985
        output_name = node.name
S
SunAhong1993 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
2010

S
SunAhong1993 已提交
2011 2012 2013 2014 2015 2016 2017
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
2018 2019 2020
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2021 2022 2023 2024 2025
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2026
        output_name = node.name
S
SunAhong1993 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2040 2041 2042
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2043 2044
            output_size=output_shape[2:])

Y
yeliang2258 已提交
2045 2046
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
2047
        import paddle
Y
yeliang2258 已提交
2048
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2138
        self.paddle_graph.add_layer(
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2180 2181
            outputs=[node.name])

S
SunAhong1993 已提交
2182 2183 2184
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2185
        output_name = node.name
S
SunAhong1993 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2199 2200 2201
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2202 2203 2204 2205
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2206
        output_name = node.name
S
SunAhong1993 已提交
2207 2208
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2209 2210 2211 2212 2213 2214 2215 2216

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2244
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2273
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2274 2275
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2276 2277 2278 2279 2280 2281
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2282
        if has_bias:
C
Channingss 已提交
2283 2284
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2285 2286 2287 2288 2289 2290 2291
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2292 2293
        else:
            layer_attrs["bias_attr"] = False
2294 2295
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2296 2297 2298 2299
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2300 2301 2302
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2303
                shape=input_shape)
S
SunAhong1993 已提交
2304
        self.paddle_graph.add_layer(
2305 2306 2307
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2308 2309 2310 2311
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2312
        output_name = node.name
S
SunAhong1993 已提交
2313 2314
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2315 2316 2317 2318 2319 2320 2321 2322

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2334
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

W
wjj19950828 已提交
2344
        if len(output_size) != 0:
W
wjj19950828 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2364

W
wjj19950828 已提交
2365 2366 2367 2368 2369 2370 2371 2372
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2373

S
fix  
SunAhong1993 已提交
2374
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2375
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2397
        layer_attrs = {
2398
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2399
            "out_channels": num_out_channels * num_groups,
2400
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2401 2402 2403
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2404
            "groups": num_groups,
2405 2406 2407 2408 2409 2410
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2411 2412
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2413
        if val_b is not None:
2414 2415 2416 2417 2418
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2419 2420
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2421
        self.paddle_graph.add_layer(
2422
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2423
            inputs=inputs_dict,
2424
            outputs=layer_outputs,
S
SunAhong1993 已提交
2425
            **layer_attrs)
2426

S
fix  
SunAhong1993 已提交
2427 2428 2429 2430 2431
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2432
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2433
        self.paddle_graph.add_layer(
2434 2435
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2436
            outputs=[node.name],
C
Channingss 已提交
2437 2438 2439
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2440 2441 2442
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2443
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2444 2445 2446 2447
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2448
            dtype=string('int64'))
S
SunAhong1993 已提交
2449
        self.paddle_graph.add_layer(
2450 2451
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2452 2453 2454
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2455 2456
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2457 2458
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2459 2460
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2461
        self.paddle_graph.add_layer(
2462
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2463 2464
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2465 2466
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2467 2468
                outputs=[node.name],
                dtype=string(node.dtype))
2469

S
SunAhong1993 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2480 2481 2482 2483 2484 2485
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2486 2487
            outputs=layer_outputs,
            axis=axis)
2488

S
SunAhong1993 已提交
2489 2490 2491 2492
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2493
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2494

2495 2496
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2497 2498 2499 2500 2501 2502
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2503
        have_bias = False
C
Channingss 已提交
2504
        if input_nums > 3 and node.layer.input[3] != '':
2505 2506
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2507
            have_bias = True
C
Channingss 已提交
2508 2509
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2510 2511
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2512 2513
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2514 2515
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2516 2517 2518 2519
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2520
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2521 2522
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2523 2524
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2525 2526 2527 2528
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2529
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2530 2531

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2532
        _rename_or_remove_weight(self.weights, input_weight.name)
2533
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2534 2535
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2536
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2537
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2538
        _rename_or_remove_weight(self.weights, bias.name)
2539 2540
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2541 2542 2543 2544 2545 2546

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2547
            slices = [w[:, x * n:y * n] for x, y in intervals]
2548
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2549

2550 2551 2552 2553
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2554

C
Channingss 已提交
2555
        weights = transform_weight_with_bias(
C
Channingss 已提交
2556 2557 2558 2559 2560
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2561
        yh_out = node.output(1)
C
Channingss 已提交
2562
        yc_out = node.output(2)
2563
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2578
        if direction == 'backward':
2579 2580 2581
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2582
        else:
C
Channingss 已提交
2583 2584 2585
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2586

C
Channingss 已提交
2587
        self.paddle_graph.add_layer(
2588 2589 2590 2591 2592
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2593 2594 2595 2596
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2597
            direction=string(direction),
C
Channingss 已提交
2598 2599 2600 2601 2602 2603
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2604
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2605 2606 2607 2608
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2609 2610
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2611 2612 2613 2614
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2615 2616 2617 2618 2619 2620
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2621 2622
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2623 2624 2625 2626
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2627
        self.paddle_graph.add_layer(
2628
            "paddle.topk",
S
SunAhong1993 已提交
2629
            inputs={"x": val_x.name,
2630 2631 2632 2633 2634
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2635
            **layer_attrs)
2636

S
add lrn  
SunAhong1993 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2647
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2648
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2649
            "paddle.nn.LocalResponseNorm",
2650 2651
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2652
            **layer_attrs)
2653

S
SunAhong1993 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2666
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2667 2668 2669 2670
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2671
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2672 2673 2674 2675
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2676
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2677 2678 2679 2680 2681
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2682
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2683 2684 2685 2686
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2687
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2688 2689 2690 2691
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2692 2693 2694 2695 2696 2697 2698 2699 2700
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
2701
        num_classes = scores.out_shapes[0][1]
2702 2703 2704 2705 2706
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
2707 2708
            layer_attrs["keep_top_k"] = _const_weight_or_none(
                max_output_boxes_per_class).tolist()[0] * num_classes
2709
        else:
2710
            layer_attrs["keep_top_k"] = 0
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        else:
            layer_attrs["nms_threshold"] = 0.0
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        else:
            layer_attrs["score_threshold"] = 0.0
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)