Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
16df89ef
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
16df89ef
编写于
1月 06, 2021
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
a02ad500
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
253 addition
and
106 deletion
+253
-106
x2paddle/core/program.py
x2paddle/core/program.py
+2
-2
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+9
-4
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py
..._mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py
+3
-1
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py
...p_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py
+9
-22
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py
...per/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py
+35
-0
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py
...per/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py
+37
-0
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_two_input.py
...er/dygraph/onnx2paddle/onnx_custom_layer/pad_two_input.py
+6
-4
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
+152
-73
未找到文件。
x2paddle/core/program.py
浏览文件 @
16df89ef
...
...
@@ -210,8 +210,8 @@ class PaddleGraph(object):
if
self
.
edges_in
.
get
(
layer_id
,
0
)
==
0
and
self
.
edges_out
.
get
(
layer_id
,
0
)
==
0
and
layer
.
kernel
!=
"prim.assert"
\
and
layer
.
kernel
!=
"prim.exception"
\
and
layer
.
kernel
!=
"prim.warnings"
:
if
layer
.
kernel
==
"paddle.to_tensor"
:
and
layer
.
kernel
!=
"prim.warnings"
and
layer
.
outputs
[
0
]
not
in
self
.
outputs
:
if
layer
.
kernel
==
"paddle.to_tensor"
and
layer
.
outputs
[
0
]
in
self
.
inputs_info
:
self
.
inputs_info
.
pop
(
layer
.
outputs
[
0
])
invalid_list
.
append
(
layer_id
)
for
layer_id
in
invalid_list
:
...
...
x2paddle/decoder/onnx_decoder.py
浏览文件 @
16df89ef
...
...
@@ -234,11 +234,16 @@ class ONNXGraph(Graph):
"""
generate output_nodes node of ONNX model
"""
inner_nodes
=
self
.
get_inner_nodes
()
#
inner_nodes = self.get_inner_nodes()
output_nodes
=
[
value
.
name
for
value
in
self
.
graph
.
output
]
# for opt_data in output_nodes:
# if opt_data not in inner_nodes:
# self.output_nodes.append(opt_data)
for
opt_data
in
output_nodes
:
if
opt_data
not
in
inner_nodes
:
self
.
output_nodes
.
append
(
opt_data
)
n
=
super
(
ONNXGraph
,
self
).
get_node
(
opt_data
)
if
n
is
None
:
self
.
topo_sort
.
append
(
self
.
node_map
[
opt_data
])
self
.
output_nodes
.
append
(
opt_data
)
def
is_place_holder_nodes
(
self
,
layer
):
"""
...
...
@@ -403,7 +408,7 @@ class ONNXDecoder(object):
check_model
(
onnx_model
)
onnx_model
=
self
.
optimize_model_skip_op
(
onnx_model
)
onnx_model
=
self
.
optimize_model_strip_initializer
(
onnx_model
)
#
onnx_model = self.optimize_model_strip_initializer(onnx_model)
onnx_model
=
self
.
optimize_node_name
(
onnx_model
)
self
.
graph
=
ONNXGraph
(
onnx_model
)
#self.onnx_model = onnx_model
...
...
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py
浏览文件 @
16df89ef
...
...
@@ -14,4 +14,6 @@
from
.one_hot
import
OneHot
from
.pad
import
CustomPad
\ No newline at end of file
from
.pad_two_input
import
PadWithTwoInput
from
.pad_all_dim2
import
PadAllDim2
from
.pad_all_dim4
import
PadAllDim4
\ No newline at end of file
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py
浏览文件 @
16df89ef
...
...
@@ -19,30 +19,17 @@ class OneHot(object):
self
.
axis
=
axis
def
__call__
(
self
,
indices
,
depth
,
values
):
indices_shape
=
paddle
.
shape
(
indices
)
tmp
=
paddle
.
ones_like
(
indices_shape
,
dtype
=
"int32"
)
rank
=
paddle
.
sum
(
tmp
)
indices_shape
=
indices
.
shape
rank
=
len
(
indices
.
shape
)
real_axis
=
self
.
axis
if
self
.
axis
<
0
:
real_axis
=
self
.
axis
+
rank
+
1
depth_range
=
paddle
.
arange
(
end
=
depth
)
zero
=
paddle
.
zeros
([
1
],
dtype
=
"int32"
)
one
=
paddle
.
ones
([
1
],
dtype
=
"int32"
)
axis
=
self
.
axis
*
one
new_axis
=
axis
+
rank
+
1
cond
=
paddle
.
less_than
(
axis
,
zero
)
real_axis
=
paddle
.
where
(
cond
,
new_axis
,
axis
)
ls
=
paddle
.
slice
(
indices_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
real_axis
)
rs
=
paddle
.
slice
(
indices_shape
,
axes
=
[
0
],
starts
=
real_axis
,
ends
=
rank
)
tmp
=
paddle
.
ones_like
(
ls
,
dtype
=
"int32"
)
ls_len
=
paddle
.
sum
(
tmp
)
ls_list
=
paddle
.
ones
(
ls_len
,
dtype
=
"int32"
)
tmp
=
paddle
.
ones_like
(
rs
,
dtype
=
"int32"
)
rs_len
=
paddle
.
sum
(
tmp
)
rs_list
=
paddle
.
ones
(
rs_len
,
dtype
=
"int32"
)
depth_range_shape
=
paddle
.
shape
(
depth_range
)
targets_shape
=
paddle
.
concat
([
ls_list
,
depth_range_shape
,
rs_list
],
axis
=
0
)
targets
=
paddle
.
reshape
(
depth_range
,
targets_shape
)
ls
=
tuple
(
indices_shape
[
0
:
real_axis
])
rs
=
tuple
(
indices_shape
[
real_axis
:
rank
])
targets
=
paddle
.
reshape
(
depth_range
,
(
1
,)
*
(
real_axis
-
0
)
+
tuple
(
depth_range
.
shape
)
+
(
1
,)
*
(
rank
-
real_axis
))
mod
=
paddle
.
mod
(
indices
,
depth
)
v_shape
=
paddle
.
concat
([
ls
,
paddle
.
shape
(
one
),
rs
],
axis
=
0
)
v
=
paddle
.
reshape
(
mod
,
v_shape
)
v
=
paddle
.
reshape
(
mod
,
ls
+
(
1
,)
+
rs
)
out
=
targets
==
v
out
=
paddle
.
cast
(
out
,
"float32"
)
on_value
=
paddle
.
slice
(
values
,
axes
=
[
0
],
starts
=
[
1
],
ends
=
[
2
])
...
...
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py
0 → 100644
浏览文件 @
16df89ef
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
x2paddle.core.util
import
*
class
PadAllDim2
(
object
):
def
__init__
(
self
,
value
,
mode
):
self
.
layer_attrs
=
{}
self
.
layer_attrs
[
'mode'
]
=
mode
self
.
layer_attrs
[
'data_format'
]
=
'NCHW'
self
.
layer_attrs
[
'value'
]
=
value
def
__call__
(
self
,
x
,
pad
):
pad
=
paddle
.
reshape
(
pad
,
shape
=
[
2
,
-
1
])
pad
=
paddle
.
transpose
(
pad
,
perm
=
[
1
,
0
])
pad
=
paddle
.
reverse
(
pad
,
axis
=
[
0
])
pad
=
paddle
.
flatten
(
pad
)
pad
=
paddle
.
cast
(
pad
,
dtype
=
"int32"
)
x
=
paddle
.
unsqueeze
(
x
,
axis
=
[
0
,
1
])
out
=
paddle
.
nn
.
functional
.
pad
(
x
=
x
,
pad
=
pad
,
**
self
.
layer_attrs
)
out
=
paddle
.
squeeze
(
out
,
axis
=
[
0
,
1
])
return
out
\ No newline at end of file
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py
0 → 100644
浏览文件 @
16df89ef
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
x2paddle.core.util
import
*
class
PadAllDim4
(
object
):
def
__init__
(
self
,
value
,
mode
):
self
.
layer_attrs
=
{}
self
.
layer_attrs
[
'mode'
]
=
mode
self
.
layer_attrs
[
'data_format'
]
=
'NCHW'
self
.
layer_attrs
[
'value'
]
=
value
def
__call__
(
self
,
x
,
pad
):
pad
=
paddle
.
reshape
(
pad
,
shape
=
[
2
,
-
1
])
pad
=
paddle
.
transpose
(
pad
,
perm
=
[
1
,
0
])
pad
=
paddle
.
reverse
(
pad
,
axis
=
[
0
])
pad
=
paddle
.
flatten
(
pad
)
pad
=
paddle
.
cast
(
pad
,
dtype
=
"int32"
)
pad1
,
pad2
=
paddle
.
split
(
pad
,
num_or_sections
=
2
,
axis
=
0
)
x
=
paddle
.
nn
.
functional
.
pad
(
x
=
x
,
pad
=
pad1
,
**
self
.
layer_attrs
)
x
=
paddle
.
transpose
(
x
,
perm
=
[
2
,
3
,
0
,
1
])
x
=
paddle
.
nn
.
functional
.
pad
(
x
=
x
,
pad
=
pad2
,
**
self
.
layer_attrs
)
out
=
paddle
.
transpose
(
x
,
perm
=
[
2
,
3
,
0
,
1
])
return
out
\ No newline at end of file
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad.py
→
x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad
_two_input
.py
浏览文件 @
16df89ef
...
...
@@ -13,12 +13,13 @@
# limitations under the License.
import
paddle
from
x2paddle.core.util
import
*
class
CustomPad
(
object
):
def
__init__
(
self
,
value
,
mode
):
class
PadWithTwoInput
(
object
):
def
__init__
(
self
,
value
,
mode
,
data_format
):
self
.
layer_attrs
=
{}
self
.
layer_attrs
[
'mode'
]
=
string
(
mode
)
self
.
layer_attrs
[
'data_format'
]
=
string
(
'NCHW'
)
self
.
layer_attrs
[
'mode'
]
=
mode
self
.
layer_attrs
[
'data_format'
]
=
data_format
self
.
layer_attrs
[
'value'
]
=
value
...
...
@@ -27,5 +28,6 @@ class CustomPad(object):
pad
=
paddle
.
transpose
(
pad
,
perm
=
[
1
,
0
])
pad
=
paddle
.
reverse
(
pad
,
axis
=
[
0
])
pad
=
paddle
.
flatten
(
pad
)
pad
=
paddle
.
cast
(
pad
,
dtype
=
"int32"
)
out
=
paddle
.
nn
.
functional
.
pad
(
x
=
x
,
pad
=
pad
,
**
self
.
layer_attrs
)
return
out
\ No newline at end of file
x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py
浏览文件 @
16df89ef
...
...
@@ -142,6 +142,7 @@ class OpSet9():
self
.
inputs_info
=
dict
()
self
.
weights
=
dict
()
self
.
nn_name2id
=
dict
()
self
.
done_weight_list
=
list
()
@
print_mapping_info
def
directly_map
(
self
,
node
,
*
args
,
**
kwargs
):
...
...
@@ -232,8 +233,7 @@ class OpSet9():
shape
=
shape
,
attr
=
string
(
node
.
name
),
dtype
=
string
(
dtype
),
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
def
_pad_if_asymmetric
(
self
,
node
,
pads
,
val_name
):
# pads: SSEE
assert
len
(
pads
)
&
1
==
0
...
...
@@ -394,78 +394,111 @@ class OpSet9():
value
=
node
.
get_attr
(
'value'
,
0.
)
data_shape
=
val_x
.
out_shapes
[
0
]
output_shape
=
node
.
out_shapes
[
0
]
assume_pad
2d
=
False
assume_pad
=
False
layer_attrs
=
{}
layer_attrs
[
'mode'
]
=
string
(
mode
)
layer_attrs
[
'value'
]
=
value
if
not
op_independent
:
output_name
=
node
.
name
+
'_paded'
else
:
output_name
=
node
.
name
nn_op_name
=
name_generator
(
"pad"
,
self
.
nn_name2id
)
layer_outputs
=
[
nn_op_name
,
output_name
]
if
is_pads_attr
:
paddings
=
[]
if
len
(
pads
)
==
4
:
assume_pad2d
|=
mode
!=
'constant'
if
len
(
pads
)
in
[
2
,
4
,
6
]:
if
data_shape
:
assume_pad
2d
|=
data_shape
and
len
(
data_shape
)
==
4
# NCHW
assume_pad
|=
data_shape
and
2
*
(
len
(
data_shape
)
-
2
)
==
len
(
pads
)
# NCHW
if
output_shape
:
assume_pad2d
|=
output_shape
and
len
(
output_shape
)
==
4
# NCHW
if
assume_pad2d
:
paddle_op
=
'paddle.nn.Pad2D'
layer_attrs
[
'data_format'
]
=
string
(
'NCHW'
)
layer_attrs
[
'value'
]
=
value
else
:
paddle_op
=
'paddle.fluid.layers.pad'
layer_attrs
[
"pad_value"
]
=
value
if
len
(
pads
)
==
4
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
2
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
assume_pad
|=
output_shape
and
2
*
(
len
(
output_shape
)
-
2
)
==
len
(
pads
)
# NCHW
if
assume_pad
:
paddle_op
=
'paddle.nn.Pad{}D'
.
format
(
len
(
output_shape
)
-
2
)
paddings
=
np
.
array
(
pads
).
reshape
(
(
2
,
-
1
)).
transpose
().
astype
(
"int32"
)
paddings
=
np
.
flip
(
paddings
).
flatten
().
tolist
()
layer_attrs
[
'padding'
]
=
paddings
else
:
if
data_shape
:
assume_pad
|=
data_shape
and
2
*
len
(
data_shape
)
==
len
(
pads
)
# NCHW
if
output_shape
:
assume_pad
|=
output_shape
and
2
*
len
(
output_shape
)
==
len
(
pads
)
# NCHW
if
assume_pad
:
paddle_op
=
'paddle.nn.functional.pad'
paddings
=
np
.
array
(
pads
).
reshape
(
(
2
,
-
1
)).
transpose
().
astype
(
"int32"
).
flatten
().
tolist
()
layer_attrs
[
'pad'
]
=
paddings
else
:
raise
Exception
(
"The padding value {} is wrong!"
.
format
(
pads
))
elif
len
(
pads
)
==
8
:
paddings
=
np
.
array
(
pads
).
reshape
(
(
-
1
,
4
)).
transpose
().
flatten
().
tolist
()
# SSEE -> SESE
if
sum
(
paddings
[:
4
])
==
0
:
paddle_op
=
'paddle.nn.Pad2D'
paddings
=
paddings
[
4
:]
layer_attrs
[
'value'
]
=
value
if
'pad_value'
in
layer_attrs
:
layer_attrs
.
pop
(
'pad_value'
)
tmp_paddings
=
copy
.
deepcopy
(
paddings
)
paddings
[
0
]
=
tmp_paddings
[
2
]
paddings
[
1
]
=
tmp_paddings
[
3
]
paddings
[
2
]
=
tmp_paddings
[
0
]
paddings
[
3
]
=
tmp_paddings
[
1
]
if
paddle_op
==
'paddle.nn.Pad2D'
:
layer_attrs
[
'padding'
]
=
paddings
nn_op_name
=
name_generator
(
"pad2d"
,
self
.
nn_name2id
)
else
:
layer_attrs
[
'paddings'
]
=
paddings
if
op_independent
:
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
.
name
},
outputs
=
[
nn_op_name
,
node
.
name
]
if
paddle_op
==
'paddle.nn.Pad2D'
else
[
node
.
name
],
**
layer_attrs
)
if
data_shape
:
assume_pad
|=
data_shape
and
2
*
len
(
data_shape
)
==
len
(
pads
)
# NCHW
if
output_shape
:
assume_pad
|=
output_shape
and
2
*
len
(
output_shape
)
==
len
(
pads
)
# NCHW
if
assume_pad
:
paddle_op
=
'paddle.nn.functional.pad'
paddings
=
np
.
array
(
pads
).
reshape
(
(
2
,
-
1
)).
transpose
().
astype
(
"int32"
).
flatten
().
tolist
()
layer_attrs
[
'pad'
]
=
paddings
else
:
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
.
name
},
outputs
=
[
nn_op_name
,
node
.
name
+
'_paded'
]
if
paddle_op
==
'paddle.nn.Pad2D'
\
else
[
node
.
name
+
'_paded'
],
**
layer_attrs
)
raise
Exception
(
"The padding value {} is wrong!"
.
format
(
pads
))
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
.
name
},
outputs
=
layer_outputs
[
1
:]
if
paddle_op
==
'paddle.nn.functional.pad'
else
layer_outputs
,
**
layer_attrs
)
if
not
op_independent
:
return
node
.
name
+
'_paded'
else
:
if
pad_shape
[
0
]
==
4
:
assume_pad2d
|=
mode
!=
'constant'
pads_len
=
val_pad
.
out_shapes
[
0
][
0
]
if
pads_len
in
[
2
,
4
,
6
]:
if
data_shape
:
assume_pad
2d
|=
data_shape
and
len
(
data_shape
)
==
4
# NCHW
assume_pad
|=
data_shape
and
2
*
(
len
(
data_shape
)
-
2
)
==
pads_len
# NCHW
if
output_shape
:
assume_pad2d
|=
output_shape
and
len
(
output_shape
)
==
4
# NCHW
if
pad_shape
[
0
]
==
8
or
not
assume_pad2d
:
raise
Exception
(
"When the pad shape is 8 and pad is tensor, the op is not supported yet!"
)
nn_op_name
=
name_generator
(
"custom_pad"
,
self
.
nn_name2id
)
output_name
=
node
.
name
+
'_paded'
layer_outputs
=
[
nn_op_name
,
output_name
]
layer_attrs
[
'value'
]
=
value
self
.
paddle_graph
.
add_layer
(
"custom_layer:CustomPad"
,
inputs
=
{
'x'
:
val_x
.
name
,
'pad'
:
val_pad
.
name
},
outputs
=
layer_outputs
,
**
layer_attrs
)
assume_pad
|=
output_shape
and
2
*
(
len
(
output_shape
)
-
2
)
==
pads_len
# NCHW
if
assume_pad
:
if
pads_len
==
2
:
data_format
=
"NCL"
elif
pads_len
==
4
:
data_format
=
"NCHW"
else
:
data_format
=
"NCDHW"
self
.
paddle_graph
.
add_layer
(
"custom_layer:PadWithTwoInput"
,
inputs
=
{
'x'
:
val_x
.
name
,
'pad'
:
val_pad
.
name
},
outputs
=
layer_outputs
,
value
=
value
,
mode
=
string
(
mode
),
data_format
=
string
(
data_format
))
else
:
if
data_shape
:
assume_pad
|=
data_shape
and
2
*
len
(
data_shape
)
==
pads_len
# NCHW
if
output_shape
:
assume_pad
|=
output_shape
and
2
*
len
(
output_shape
)
==
pads_len
# NCHW
if
assume_pad
:
if
pads_len
==
4
:
self
.
paddle_graph
.
add_layer
(
"custom_layer:PadAllDim2"
,
inputs
=
{
'x'
:
val_x
.
name
,
'pad'
:
val_pad
.
name
},
outputs
=
layer_outputs
,
value
=
value
,
mode
=
string
(
mode
))
else
:
raise
Exception
(
"The padding value is wrong!"
)
elif
pads_len
==
8
:
if
data_shape
:
assume_pad
|=
data_shape
and
2
*
len
(
data_shape
)
==
pads_len
# NCHW
if
output_shape
:
assume_pad
|=
output_shape
and
2
*
len
(
output_shape
)
==
pads_len
# NCHW
if
assume_pad
:
self
.
paddle_graph
.
add_layer
(
"custom_layer:PadAllDim4"
,
inputs
=
{
'x'
:
val_x
.
name
,
'pad'
:
val_pad
.
name
},
outputs
=
layer_outputs
,
value
=
value
,
mode
=
string
(
mode
))
else
:
print
(
pads_len
)
raise
Exception
(
"The padding value is wrong!"
)
if
not
op_independent
:
return
node
.
name
+
'_paded'
...
...
@@ -678,8 +711,9 @@ class OpSet9():
'paddle.nn.Embedding'
,
inputs
=
{
"x"
:
indices_cast
},
outputs
=
layer_outputs
,
param_attr
=
string
(
val_x
.
name
),
size
=
val_x
.
out_shapes
[
0
])
weight_attr
=
string
(
val_x
.
name
),
num_embeddings
=
val_x
.
out_shapes
[
0
][
0
],
embedding_dim
=
val_x
.
out_shapes
[
0
][
1
])
else
:
from
functools
import
reduce
reshape_shape
=
reduce
(
lambda
x
,
y
:
x
*
y
,
indices_shape
)
...
...
@@ -851,14 +885,21 @@ class OpSet9():
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
starts_value
=
_const_weight_or_none
(
starts
)
if
starts_value
is
not
None
:
starts_value
=
starts_value
.
tolist
()
ends_value
=
_const_weight_or_none
(
ends
)
if
ends_value
is
not
None
:
ends_value
=
ends_value
.
tolist
()
if
len
(
node
.
inputs
)
>
2
:
s_len
=
len
(
val_x
.
out_shapes
[
0
])
axes
=
list
(
range
(
s_len
))
if
len
(
node
.
inputs
)
>
3
:
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
,
necessary
=
True
)
axes
_node
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
_node
,
necessary
=
True
).
tolist
(
)
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
_const_weight_or_none
(
steps
)
steps
=
_const_weight_or_none
(
steps
).
tolist
()
layer_attrs
=
{
"axes"
:
axes
,
"starts"
:
starts
.
name
,
...
...
@@ -911,6 +952,7 @@ class OpSet9():
ends
[
idx
]
=
2
**
31
-
1
layer_attrs
=
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
}
if
steps
is
not
None
:
layer_attrs
[
'strides'
]
=
steps
self
.
paddle_graph
.
add_layer
(
...
...
@@ -1036,6 +1078,12 @@ class OpSet9():
inputs
=
{
'x'
:
val_shape
.
name
},
outputs
=
[
val_shape
.
name
],
shape
=
val_shape
.
out_shapes
[
0
])
if
val_shape
.
dtype
!=
"int32"
:
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
'x'
:
val_shape
.
name
},
outputs
=
[
val_shape
.
name
],
dtype
=
string
(
"int32"
))
self
.
paddle_graph
.
add_layer
(
'paddle.reshape'
,
inputs
=
{
'x'
:
val_x
.
name
,
...
...
@@ -1280,7 +1328,10 @@ class OpSet9():
@
print_mapping_info
def
Transpose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
perm
=
node
.
get_attr
(
'perm'
)
s_len
=
len
(
val_x
.
out_shapes
[
0
])
perm_default
=
list
(
range
(
s_len
))
perm_default
.
reverse
()
perm
=
node
.
get_attr
(
'perm'
,
perm_default
)
self
.
paddle_graph
.
add_layer
(
"paddle.transpose"
,
inputs
=
{
"x"
:
val_x
.
name
},
...
...
@@ -1584,6 +1635,7 @@ class OpSet9():
strides
[
1
])
paddings
=
pad_h
+
pad_w
layer_inputs
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
}
layer_attrs
=
{
"in_channels"
:
num_in_channels
*
num_groups
,
"out_channels"
:
num_out_channels
,
...
...
@@ -1592,15 +1644,25 @@ class OpSet9():
"padding"
:
paddings
,
"dilation"
:
dilations
,
"groups"
:
num_groups
,
'weight_attr'
:
string
(
val_w
.
name
),
}
val_w_name
=
val_w
.
name
while
val_w_name
in
self
.
done_weight_list
:
val_w_name
+=
"__repeat"
self
.
done_weight_list
.
append
(
val_w_name
)
layer_attrs
[
"weight_attr"
]
=
string
(
val_w_name
)
self
.
weights
[
val_w_name
]
=
self
.
weights
[
val_w
.
name
]
if
has_bias
:
layer_attrs
[
"bias_attr"
]
=
string
(
val_b
.
name
)
val_b_name
=
val_b
.
name
while
val_b_name
in
self
.
done_weight_list
:
val_b_name
+=
"__repeat"
self
.
done_weight_list
.
append
(
val_b_name
)
layer_attrs
[
"bias_attr"
]
=
string
(
val_b_name
)
self
.
weights
[
val_b_name
]
=
self
.
weights
[
val_b
.
name
]
else
:
layer_attrs
[
"bias_attr"
]
=
False
self
.
paddle_graph
.
add_layer
(
paddle_op
,
inputs
=
{
'x'
:
val_x
if
isinstance
(
val_x
,
str
)
else
val_x
.
name
}
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
**
layer_attrs
)
...
...
@@ -1674,8 +1736,13 @@ class OpSet9():
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
self
.
paddle_graph
.
add_layer
(
"paddle.shape"
,
inputs
=
{
"
x
"
:
val_x
.
name
},
inputs
=
{
"
input
"
:
val_x
.
name
},
outputs
=
[
node
.
name
])
self
.
paddle_graph
.
add_layer
(
'paddle.cast'
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
string
(
'int64'
))
self
.
paddle_graph
.
add_layer
(
"paddle.prod"
,
inputs
=
{
"x"
:
node
.
name
},
...
...
@@ -1684,10 +1751,22 @@ class OpSet9():
@
print_mapping_info
def
Sign
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
if
node
.
dtype
not
in
[
"float16"
,
"float32"
,
"float64"
]:
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
val_x
.
name
],
dtype
=
string
(
"float32"
))
self
.
paddle_graph
.
add_layer
(
"paddle.sign"
,
inputs
=
{
"x"
:
val_x
.
name
},
outputs
=
[
node
.
name
])
if
node
.
dtype
not
in
[
"float16"
,
"float32"
,
"float64"
]:
self
.
paddle_graph
.
add_layer
(
"paddle.cast"
,
inputs
=
{
"x"
:
node
.
name
},
outputs
=
[
node
.
name
],
dtype
=
string
(
node
.
dtype
))
@
print_mapping_info
def
OneHot
(
self
,
node
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录