opset.py 106.8 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
W
WJJ1995 已提交
125
        'LessOrEqual': 'paddle.less_equal',
S
SunAhong1993 已提交
126 127
    }

S
SunAhong1993 已提交
128 129 130
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
131 132 133
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
134
                    axes=None, keepdims=True)
135 136 137 138
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
139
                    axes=None, keepdim=True)
140 141 142 143
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
144
                    axes=None, keepdim=True)
145 146 147 148
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
149
                    axes=None, keepdim=True)
150
        ],
S
SunAhong1993 已提交
151 152
        # active function
        'Relu': ['paddle.nn.ReLU'],
153 154 155 156 157 158 159 160 161 162
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
163 164 165
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
166 167 168 169
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
170
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
171
        'Log': ['paddle.log'],
172 173 174
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
175 176 177 178
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
179 180
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
181 182 183 184 185 186 187 188 189
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
190
        self.done_weight_list = list()
191 192 193
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
194 195 196 197 198 199

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
215
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
216 217
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
218
            output_name = node.name
S
SunAhong1993 已提交
219
            layer_outputs = [op_name, output_name]
220

S
SunAhong1993 已提交
221 222
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
223
                inputs={"x": input.name},
S
SunAhong1993 已提交
224 225 226 227 228
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
229 230
                inputs={"x": input.name},
                outputs=[node.name],
231 232
                **layer_attrs)

S
SunAhong1993 已提交
233 234 235 236 237
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
238
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
239
        self.paddle_graph.add_layer(
240
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
241 242 243 244 245 246 247 248 249 250 251 252

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
253
            outputs=[node.name],
S
SunAhong1993 已提交
254 255
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
256 257 258 259 260 261 262

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
263

S
fix  
SunAhong1993 已提交
264
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
W
WJJ1995 已提交
265 266
            if node.weight == float('inf') or node.weight == float('-inf'):
                node.weight = string(node.weight)
S
SunAhong1993 已提交
267
            self.paddle_graph.add_layer(
268 269
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
270
                outputs=[node.name],
S
SunAhong1993 已提交
271 272 273 274
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
275
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
276 277 278
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
279
                outputs=[node.name],
S
SunAhong1993 已提交
280
                shape=shape,
S
SunAhong1993 已提交
281
                attr=string(node.name),
S
SunAhong1993 已提交
282
                dtype=string(dtype),
283
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
300
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
301
        attrs = dict()
W
WJJ1995 已提交
302
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
303 304 305 306
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
307
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
308
                # which is the same as the rank of input.
W
WJJ1995 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
336 337 338
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
339
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
340
                # which is the same as the rank of input.
341 342
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
343 344 345
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
346
                size_values = _const_weight_or_none(val_sizes)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
408 409
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
410
                    })
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
426
                return
S
SunAhong1993 已提交
427
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
428 429 430 431 432 433 434 435 436 437 438 439
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
440

S
SunAhong1993 已提交
441
        mode = node.get_attr('mode', 'nearest')
442 443 444 445 446
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
447 448
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
449 450
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
451 452 453 454 455 456
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
457 458 459
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
460
            outputs=[node.name],
S
SunAhong1993 已提交
461
            **attrs)
462

W
WJJ1995 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475
    @print_mapping_info
    def CumSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = self.graph.get_input_node(node, idx=1, copy=True)
        axis_values = _const_weight_or_none(axis)
        assert axis_values is not None, 'Axis only support constant tensor!'
        layer_attrs = {'axis': axis_values}
        self.paddle_graph.add_layer(
            'paddle.cumsum',
            inputs={"x": val_x.name},
            outputs=[node.name],
            **layer_attrs)

S
SunAhong1993 已提交
476 477 478 479 480 481 482
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
483 484
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
485 486 487 488
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
489 490
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
491
            min=0.0,
492 493
            max=1.0)

S
SunAhong1993 已提交
494 495 496 497 498 499 500 501
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
502 503 504 505
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
506 507 508 509 510 511 512 513 514 515

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
516 517 518 519 520 521
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
522 523 524 525 526 527 528 529 530 531 532 533 534 535
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
536 537 538 539 540 541 542
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
543
            'custom_layer:ROIAlign',
W
wjj19950828 已提交
544 545 546 547 548
            inputs={
                'input': val_x.name,
                'rois': val_rois.name,
                'rois_num': val_rois_num
            },
S
SunAhong1993 已提交
549
            outputs=[node.name],
S
SunAhong1993 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
565
            'custom_layer:ROIPooling',
S
SunAhong1993 已提交
566 567 568
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
569 570 571 572 573 574
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
575 576 577 578 579 580 581 582
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
583
        mode = node.get_attr('mode', 'constant')
584 585
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
586 587 588
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
589
        assume_pad = False
S
SunAhong1993 已提交
590 591
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
592 593 594
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
595
        else:
S
fix  
SunAhong1993 已提交
596 597 598
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
599 600
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
601
            if len(pads) == 10 and sum(pads) == 0:
602
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
603
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
604
                if data_shape:
605 606
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
607
                if output_shape:
608 609
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
610 611 612 613
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
614
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
615 616 617
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
618 619
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
620
                    if output_shape:
621 622
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
623 624 625
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
626 627
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
628 629
                        layer_attrs['pad'] = paddings
                    else:
630 631
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
632
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
633
                if data_shape:
634 635
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
636
                if output_shape:
637 638
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
639
                if assume_pad:
S
for pad  
SunAhong1993 已提交
640
                    paddle_op = 'paddle.nn.Pad2D'
W
wjj19950828 已提交
641
                    # x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
S
fix  
SunAhong1993 已提交
642
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
643
                        (2, -1)).transpose().astype("int32")
W
wjj19950828 已提交
644 645
                    if mode == 'constant':
                        paddings = paddings.flatten().tolist()
S
for pad  
SunAhong1993 已提交
646 647
                        layer_attrs['padding'] = paddings
                    else:
W
wjj19950828 已提交
648 649 650 651 652 653 654 655 656 657
                        paddings = np.flip(paddings, axis=0).flatten().tolist()
                        if sum(paddings[:4]) == 0:
                            paddings = paddings[4:]
                            layer_attrs['padding'] = paddings
                        else:
                            layer_attrs["pad"] = paddings
                            paddle_op = "custom_layer:PadAllDim4WithOneInput"
                else:
                    paddle_op = 'paddle.nn.functional.pad'
                    layer_attrs["pad"] = np.array(pads).tolist()
S
SunAhong1993 已提交
658
            else:
W
wjj19950828 已提交
659
                pad_data_temp = pads[0::2]
660
                pad_data_all = []
W
wjj19950828 已提交
661 662 663
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
664 665 666 667 668 669 670 671 672

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
673
            self.paddle_graph.add_layer(
674 675 676 677
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
678
                **layer_attrs)
S
fix  
SunAhong1993 已提交
679
            if not op_independent:
S
SunAhong1993 已提交
680
                return node.name + '_paded'
S
SunAhong1993 已提交
681
        else:
S
fix  
SunAhong1993 已提交
682 683
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
684
                if data_shape:
685 686
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
687
                if output_shape:
688 689
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
690 691 692 693 694 695 696 697
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
698 699 700
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
701 702 703 704 705 706
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
707 708
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
709
                    if output_shape:
710 711
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
712 713 714
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
715 716 717 718
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
719 720 721 722 723 724
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
725 726
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
727
                if output_shape:
728 729
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
730 731
                if assume_pad:
                    self.paddle_graph.add_layer(
732 733 734 735
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
736 737 738
                        value=value,
                        mode=string(mode))
            else:
739
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
740 741
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
742 743 744 745 746

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
747
        if axes is None:
W
WJJ1995 已提交
748 749 750
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
Y
fix  
yeliang2258 已提交
751
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
W
WJJ1995 已提交
752 753 754 755 756
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1])
S
SunAhong1993 已提交
757
        else:
W
WJJ1995 已提交
758 759 760 761 762
            self.paddle_graph.add_layer(
                'paddle.unsqueeze',
                inputs={"x": val_x.name},
                axis=axes,
                outputs=[node.name])
S
SunAhong1993 已提交
763 764 765 766 767 768 769 770

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
771 772 773
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
795
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
796 797 798
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
W
WJJ1995 已提交
799 800
            if value == float('inf') or value == float('-inf'):
                value = string(value)
S
SunAhong1993 已提交
801
            self.paddle_graph.add_layer(
802 803
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
804
                outputs=[node.name],
S
SunAhong1993 已提交
805 806 807 808 809
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
810
            self.weights[node.name] = value
S
SunAhong1993 已提交
811 812 813
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
814
                outputs=[node.name],
S
SunAhong1993 已提交
815
                shape=shape,
S
SunAhong1993 已提交
816
                attr=string(node.name),
S
SunAhong1993 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
831
        output_name = node.name
S
SunAhong1993 已提交
832 833 834 835 836
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
837 838
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
839 840 841 842 843
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
844
        if dim == 3:
S
SunAhong1993 已提交
845 846 847 848 849 850
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
851 852 853
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
854
        self.paddle_graph.add_layer(
855 856 857
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
858 859 860 861 862 863 864
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
865
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
879
        self.paddle_graph.add_layer(
880 881
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
882
        self.paddle_graph.add_layer(
883
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
884

Y
yeliang2258 已提交
885 886 887 888 889 890 891 892
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
893 894 895 896
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
W
WJJ1995 已提交
897 898 899
        indices_values = _const_weight_or_none(indices, necessary=True)
        if isinstance(indices_values, np.ndarray):
            indices_values = indices_values.tolist()
S
SunAhong1993 已提交
900
        indices_shape = indices.out_shapes[0]
W
WJJ1995 已提交
901
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
902
        axis = node.get_attr('axis', 0)
W
WJJ1995 已提交
903 904 905
        if len(indices_shape) == 1 or \
            (indices_values is not None and isinstance(indices_values, int)) or \
            (indices_values is not None and len(indices_values) == 1):
S
SunAhong1993 已提交
906 907
            self.paddle_graph.add_layer(
                'paddle.gather',
W
WJJ1995 已提交
908
                inputs={'x': val_x.name,
S
SunAhong1993 已提交
909
                        'index': indices.name},
910
                outputs=[node.name],
W
WJJ1995 已提交
911 912 913
                axis=axis)
            # deal with indice is scalar(0D) Tensor
            if isinstance(indices_values, int) and len(val_x_shape) > 1:
S
SunAhong1993 已提交
914 915
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
916 917
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
918
                    axis=[axis])
W
WJJ1995 已提交
919 920 921
        else:
            # if val_x is DataNode, convert gather to embedding
            if axis == 0 and isinstance(val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
922
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
923 924
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
925
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
926
                    outputs=[indices_cast],
S
SunAhong1993 已提交
927 928
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
929
                output_name = node.name
S
SunAhong1993 已提交
930
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
931
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
932 933 934 935
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
W
WJJ1995 已提交
936 937
                    num_embeddings=val_x_shape[0],
                    embedding_dim=val_x_shape[1])
S
SunAhong1993 已提交
938 939 940
            else:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
941
                    inputs={"x": indices.name},
W
WJJ1995 已提交
942 943 944
                    outputs=[indices.name + "_reshape"],
                    shape=[-1])
                gather_1d = node.name + '_1D'
S
SunAhong1993 已提交
945 946
                self.paddle_graph.add_layer(
                    'paddle.gather',
W
WJJ1995 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
                    inputs={
                        'x': val_x.name,
                        'index': indices.name + "_reshape"
                    },
                    outputs=[gather_1d],
                    axis=axis)
                # if shape is known
                if len(indices_shape) != 0 and len(val_x_shape) != 0:
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=val_x_shape[:axis] + indices_shape +
                        val_x_shape[axis + 1:])
                else:
                    all_shape_name = list()
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": val_x.name},
                        outputs=[val_x.name + "_shape"])
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": indices.name},
                        outputs=[indices.name + "_shape"])
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_start"],
                        axes=[0],
                        starts=[0],
                        ends=[axis])
                    all_shape_name.append(val_x.name + "_shape_slice_start")
                    all_shape_name.append(indices.name + "_shape")
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_end"],
                        axes=[0],
                        starts=[axis + 1],
                        ends=[2147483647])
                    all_shape_name.append(val_x.name + "_shape_slice_end")
                    self.paddle_graph.add_layer(
                        'paddle.concat',
                        inputs={"x": all_shape_name},
                        outputs=[node.name + "_all_shape"],
                        axis=0)
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=node.name + "_all_shape")
S
SunAhong1993 已提交
998 999 1000 1001 1002 1003 1004 1005 1006

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1007 1008 1009 1010 1011
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1012
                outputs=[node.name])
S
SunAhong1993 已提交
1013
        else:
S
SunAhong1993 已提交
1014
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1015 1016 1017
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1018 1019
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1020 1021
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1022
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1023 1024
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1025
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1026 1027 1028 1029 1030
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1031 1032
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1033 1034
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1035 1036
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1037 1038 1039
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1040
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1041 1042 1043 1044 1045 1046 1047
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1048
                    'index': indices.name,
S
SunAhong1993 已提交
1049 1050 1051
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1052
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1053 1054 1055
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1056
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1057 1058 1059
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1060
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1061 1062 1063 1064 1065 1066
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1067
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1068 1069
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1070
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1071 1072 1073 1074 1075 1076 1077
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1078
                outputs=[node.name])
S
SunAhong1993 已提交
1079 1080 1081 1082 1083 1084 1085

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1086 1087 1088 1089 1090
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1091 1092 1093
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1094
            outputs=[node.name],
S
SunAhong1993 已提交
1095 1096 1097 1098 1099 1100 1101
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
W
WJJ1995 已提交
1102 1103 1104 1105 1106 1107
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": val_x.name},
                outputs=[val_x.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
1108 1109 1110 1111
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1112 1113
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1114
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1115 1116 1117 1118 1119
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1120
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1121 1122
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1123 1124
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1125
                steps = _const_weight_or_none(steps).tolist()
1126

S
SunAhong1993 已提交
1127 1128
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1129 1130
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1131
            }
S
SunAhong1993 已提交
1132
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1133 1134 1135
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
W
WJJ1995 已提交
1136 1137 1138
                    if len(val_x.out_shapes[0]) != 0 and starts_value[
                            idx] >= val_x.out_shapes[0][axes[
                                idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1139 1140 1141 1142
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1143

S
SunAhong1993 已提交
1144 1145 1146 1147 1148 1149 1150
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1151
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1152 1153
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1154
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1155 1156 1157 1158
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1159
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1160 1161
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1162 1163
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1164
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1165 1166 1167 1168 1169 1170 1171
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1172 1173 1174 1175
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1176 1177 1178 1179 1180 1181 1182 1183
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1184 1185 1186
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1187 1188 1189
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1190 1191 1192
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1193
                **layer_attrs)
W
WJJ1995 已提交
1194 1195 1196 1197 1198 1199
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('uint8'))
S
SunAhong1993 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
W
WJJ1995 已提交
1212 1213
            if value == float('inf') or value == float('-inf'):
                value = string(value)
1214
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1215
            self.paddle_graph.add_layer(
1216 1217
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1218
                outputs=[node.name],
S
SunAhong1993 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1233

S
SunAhong1993 已提交
1234
            self.paddle_graph.add_layer(
1235 1236 1237
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1238 1239
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1255 1256 1257 1258 1259 1260
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1386 1387 1388 1389 1390 1391
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1401
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1417
        else:
Y
yeliang2258 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1429
            else:
Y
yeliang2258 已提交
1430
                outputs_list.append(node.name)
W
wjj19950828 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
            if len(split) > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1455 1456
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1457 1458 1459 1460 1461
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1462 1463
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1464 1465 1466 1467 1468 1469
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1470 1471
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1472
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1473 1474 1475 1476 1477 1478
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1479 1480
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1481 1482
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1483
                outputs=[node.name])
S
SunAhong1993 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1498 1499 1500
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1501 1502 1503 1504 1505
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1506 1507 1508 1509
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1533 1534 1535 1536 1537
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1538
        layer_attrs = {
S
SunAhong1993 已提交
1539 1540 1541
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1542 1543 1544 1545
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1546 1547 1548
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1549 1550 1551 1552 1553 1554 1555 1556
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1557
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1558 1559 1560 1561 1562
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1563 1564 1565
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1566 1567 1568 1569 1570
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1571
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1572 1573
        axis = node.get_attr('axis', 1)
        if axis == 0:
W
WJJ1995 已提交
1574 1575 1576 1577 1578
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1, -1])
S
SunAhong1993 已提交
1579
        else:
W
WJJ1995 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            if len(output_shape) != 0:
                shape_list = [1, 1]
                for s in output_shape[:axis]:
                    shape_list[0] *= s
                for s in output_shape[axis:]:
                    shape_list[1] *= s
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=shape_list)
            else:
                # flatten + reshape
                self.paddle_graph.add_layer(
                    "paddle.flatten",
                    inputs={"input": val_x.name},
                    outputs=[val_x.name + "_flatten"],
                    start_axis=[0],
                    stop_axis=[axis])
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_x.name + "_flatten"},
                    outputs=[node.name],
                    shape=[0, -1])
S
SunAhong1993 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1615
        val_mm = node.name + '_mm'
1616
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1627
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1628 1629 1630

        if beta != 0:
            if beta == 1.:
1631
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1632
                self.paddle_graph.add_layer(
1633
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1634
            else:
S
SunAhong1993 已提交
1635
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1636 1637
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1638
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1639 1640 1641 1642
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1643
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1644 1645 1646 1647 1648

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1649 1650 1651 1652
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1653
        }
1654 1655
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1656 1657 1658 1659

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1660 1661
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1662 1663
            }
            self.paddle_graph.add_layer(
1664
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1665 1666 1667 1668 1669 1670 1671

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1672
        inputs_dict = {"x": val_x.name, "y": val_y.name}
W
WJJ1995 已提交
1673 1674
        if len(y_shape) != 0 and y_shape[0] == 1 and len(
                x_shape) != 0 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1675
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1676 1677
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1678
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1679 1680 1681 1682
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1683
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1684 1685
        else:
            self.paddle_graph.add_layer(
1686
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1687 1688 1689 1690

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1691
        output_name = node.name
S
SunAhong1993 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1724

S
SunAhong1993 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1735 1736 1737
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1738 1739 1740 1741 1742
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1743 1744 1745 1746
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1747
        self.paddle_graph.add_layer(
1748
            "paddle.transpose",
S
SunAhong1993 已提交
1749
            inputs={"x": val_x.name},
1750
            outputs=[node.name],
S
SunAhong1993 已提交
1751 1752 1753 1754 1755
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1756
        output_name = node.name
S
SunAhong1993 已提交
1757 1758 1759 1760 1761 1762
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1763
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1764 1765
            mode = 'all'

S
SunAhong1993 已提交
1766 1767 1768
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1769 1770
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1771 1772 1773 1774
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1775 1776
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1777 1778 1779
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1780 1781
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1782
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1783 1784
            self.paddle_graph.add_layer(
                "paddle.multiply",
1785 1786
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1787 1788 1789
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1790 1791 1792 1793
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1794
                outputs=[output_name])
S
SunAhong1993 已提交
1795
        else:
S
fix  
SunAhong1993 已提交
1796
            if mode == 'channel':
S
SunAhong1993 已提交
1797
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1798 1799
                if slope_data is None:
                    self.paddle_graph.add_layer(
1800 1801
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1802 1803 1804
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1805
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1806
                        inputs={"x": val_x.name,
1807
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1808 1809
                        outputs=[node.name])
                    return
C
Channingss 已提交
1810
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1811
                if len(shape_slope) > 1:
1812 1813
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1814 1815 1816
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1817
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1818
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1819
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1820
            self.paddle_graph.add_layer(
1821 1822 1823
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1824
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1825 1826 1827 1828 1829

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
W
WJJ1995 已提交
1830 1831 1832 1833 1834
        if axes is None:
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
        if len(val_x.out_shapes[0]) <= 1 and len(axes) == 1 and axes[0] == 0:
S
SunAhong1993 已提交
1835 1836
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1837 1838
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1839 1840 1841
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1842 1843 1844
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1845 1846 1847 1848 1849 1850 1851 1852
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1853 1854 1855
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1856 1857 1858 1859 1860 1861 1862

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1863 1864
            inputs={'x': val_x.name,
                    'y': val_y.name},
1865
            outputs=[node.name])
S
SunAhong1993 已提交
1866 1867 1868 1869 1870 1871 1872 1873

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

        self.paddle_graph.add_layer(
W
WJJ1995 已提交
1874 1875 1876 1877 1878 1879
            "paddle.where",
            inputs={
                'condition': condition.name,
                'x': val_x.name,
                'y': val_y.name
            },
S
SunAhong1993 已提交
1880
            outputs=[node.name])
S
SunAhong1993 已提交
1881 1882 1883 1884

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
W
wjj19950828 已提交
1885 1886 1887 1888 1889 1890 1891
        self.paddle_graph.add_layer(
            "paddle.nonzero",
            inputs={"x": val_x.name},
            outputs=[val_x.name],
            as_tuple=True)
        self.paddle_graph.add_layer(
            "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1892 1893 1894 1895 1896

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1897
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1898 1899 1900 1901 1902 1903 1904 1905

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1906
            repeats = val_repeats.name
S
SunAhong1993 已提交
1907 1908 1909 1910
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1911
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1912
                    dtype=string("int32"))
1913
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1914 1915 1916 1917

        elif isinstance(repeats, int):
            repeats = [repeats]

1918 1919 1920
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1921 1922
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1923
            "name": string(node.name),
S
SunAhong1993 已提交
1924 1925
        }
        self.paddle_graph.add_layer(
1926 1927 1928 1929
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1930 1931 1932 1933

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1934
        output_name = node.name
S
SunAhong1993 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1959

S
SunAhong1993 已提交
1960 1961 1962 1963 1964 1965 1966
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1967 1968 1969
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1970 1971 1972 1973 1974
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1975
        output_name = node.name
S
SunAhong1993 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1989 1990 1991
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1992 1993
            output_size=output_shape[2:])

Y
yeliang2258 已提交
1994 1995
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
1996
        import paddle
Y
yeliang2258 已提交
1997
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2087
        self.paddle_graph.add_layer(
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2129 2130
            outputs=[node.name])

S
SunAhong1993 已提交
2131 2132 2133
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2134
        output_name = node.name
S
SunAhong1993 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2148 2149 2150
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2151 2152 2153 2154
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2155
        output_name = node.name
S
SunAhong1993 已提交
2156 2157
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2158 2159 2160 2161 2162 2163 2164 2165

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2193
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2222
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2223 2224
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2225 2226 2227 2228 2229 2230
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2231
        if has_bias:
C
Channingss 已提交
2232 2233
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2234 2235 2236 2237 2238 2239 2240
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2241 2242
        else:
            layer_attrs["bias_attr"] = False
2243 2244
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2245 2246 2247 2248
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2249 2250 2251
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2252
                shape=input_shape)
S
SunAhong1993 已提交
2253
        self.paddle_graph.add_layer(
2254 2255 2256
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2257 2258 2259 2260
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2261
        output_name = node.name
S
SunAhong1993 已提交
2262 2263
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2264 2265 2266 2267 2268 2269 2270 2271

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2283
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2284 2285 2286 2287 2288 2289 2290

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

W
wjj19950828 已提交
2291 2292
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2293

W
wjj19950828 已提交
2294
        if len(output_size) != 0:
W
wjj19950828 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2314

W
wjj19950828 已提交
2315 2316 2317 2318 2319 2320 2321 2322
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2323

S
fix  
SunAhong1993 已提交
2324
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2325
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2347
        layer_attrs = {
2348
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2349
            "out_channels": num_out_channels * num_groups,
2350
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2351 2352 2353
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2354
            "groups": num_groups,
2355 2356 2357 2358 2359 2360
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2361 2362
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2363
        if val_b is not None:
2364 2365 2366 2367 2368
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2369 2370
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2371
        self.paddle_graph.add_layer(
2372
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2373
            inputs=inputs_dict,
2374
            outputs=layer_outputs,
S
SunAhong1993 已提交
2375
            **layer_attrs)
2376

S
fix  
SunAhong1993 已提交
2377 2378 2379 2380 2381
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2382
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2383
        self.paddle_graph.add_layer(
2384 2385
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2386
            outputs=[node.name],
C
Channingss 已提交
2387 2388 2389
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2390 2391 2392
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2393
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2394 2395 2396 2397
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2398
            dtype=string('int64'))
S
SunAhong1993 已提交
2399
        self.paddle_graph.add_layer(
2400 2401
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2402 2403 2404
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2405 2406
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2407 2408
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2409 2410
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2411
        self.paddle_graph.add_layer(
2412
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2413 2414
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2415 2416
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2417 2418
                outputs=[node.name],
                dtype=string(node.dtype))
2419

S
SunAhong1993 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2430 2431 2432 2433 2434 2435
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2436 2437
            outputs=layer_outputs,
            axis=axis)
2438

S
SunAhong1993 已提交
2439 2440 2441 2442
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2443
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2444

2445 2446
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2447 2448 2449 2450 2451 2452
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2453
        have_bias = False
C
Channingss 已提交
2454
        if input_nums > 3 and node.layer.input[3] != '':
2455 2456
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2457
            have_bias = True
C
Channingss 已提交
2458 2459
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2460 2461
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2462 2463
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2464 2465
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2466 2467 2468 2469
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2470
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2471 2472
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2473 2474
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2475 2476 2477 2478
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2479
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2480 2481

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2482
        _rename_or_remove_weight(self.weights, input_weight.name)
2483
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2484 2485
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2486
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2487
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2488
        _rename_or_remove_weight(self.weights, bias.name)
2489 2490
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2491 2492 2493 2494 2495 2496

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2497
            slices = [w[:, x * n:y * n] for x, y in intervals]
2498
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2499

2500 2501 2502 2503
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2504

C
Channingss 已提交
2505
        weights = transform_weight_with_bias(
C
Channingss 已提交
2506 2507 2508 2509 2510
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2511
        yh_out = node.output(1)
C
Channingss 已提交
2512
        yc_out = node.output(2)
2513
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2528
        if direction == 'backward':
2529 2530 2531
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2532
        else:
C
Channingss 已提交
2533 2534 2535
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2536

C
Channingss 已提交
2537
        self.paddle_graph.add_layer(
2538 2539 2540 2541 2542
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2543 2544 2545 2546
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2547
            direction=string(direction),
C
Channingss 已提交
2548 2549 2550 2551 2552 2553
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2554
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2555 2556 2557 2558
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2559 2560
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2561 2562 2563 2564 2565 2566
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2567 2568 2569 2570
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
W
wjj19950828 已提交
2571 2572 2573
        k = _const_weight_or_none(val_k)
        if isinstance(k, (list, tuple, np.ndarray)):
            k = k[0]
W
wjj19950828 已提交
2574
        # If k can get the value directly, it is used as an attribute; otherwise it is used as an input tensor
W
wjj19950828 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        if k is not None:
            layer_attrs["k"] = k
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
        else:
            if val_k.dtype != "int32":
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_k.name},
                    outputs=[val_k.name],
                    dtype=string('int32'))
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name,
                        "k": val_k.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
2601

S
add lrn  
SunAhong1993 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2612
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2613
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2614
            "paddle.nn.LocalResponseNorm",
2615 2616
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2617
            **layer_attrs)
2618

S
SunAhong1993 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2631
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2632 2633 2634 2635
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2636
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2637 2638 2639 2640
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2641
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2642 2643 2644 2645 2646
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2647
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2648 2649 2650 2651
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2652
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2653 2654 2655 2656
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
W
wjj19950828 已提交
2668 2669 2670
        layer_attrs["keep_top_k"] = -1
        layer_attrs["nms_threshold"] = 0.0
        layer_attrs["score_threshold"] = 0.0
2671 2672 2673
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
W
wjj19950828 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
            max_output_boxes_per_class = _const_weight_or_none(
                max_output_boxes_per_class)
            if len(scores.out_shapes[0]) != 0:
                num_classes = scores.out_shapes[0][1]
            else:
                num_classes = 1
            if max_output_boxes_per_class is not None:
                max_output_boxes_per_class = max_output_boxes_per_class.tolist()
                if isinstance(max_output_boxes_per_class, int):
                    layer_attrs[
                        "keep_top_k"] = max_output_boxes_per_class * num_classes
                else:
                    layer_attrs["keep_top_k"] = max_output_boxes_per_class[
                        0] * num_classes
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)