opset.py 59.9 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46 47 48 49 50 51
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
52
        if dim < -1:
C
Channingss 已提交
53 54 55 56 57 58 59
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True

60

C
Channingss 已提交
61
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
62 63 64 65 66 67 68
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
86
class OpSet9():
87 88 89 90 91
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
92 93
        'Pow': 'elementwise_pow',
    }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
121 122 123 124
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
149
    default_ioa_constraint = {}
150 151

    def __init__(self, decoder):
C
Channingss 已提交
152
        super(OpSet9, self).__init__()
153
        self.graph = decoder.graph
C
update  
channingss 已提交
154 155 156
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
157
        self.used_custom_layers = dict()
R
root 已提交
158

159
    @print_mapping_info
C
channingss 已提交
160
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
161 162 163 164
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
165 166 167
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
168 169 170 171 172 173 174 175
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
176
            fill_name_field, ) = info
C
update  
channingss 已提交
177

178 179
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
180 181 182 183 184 185 186 187 188 189 190 191
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
192
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
193
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
194 195 196 197
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
198 199 200
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
201
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
202
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
203
            attr['name'] = string(node.layer_name)
204 205 206 207 208 209 210 211 212 213
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
214 215 216
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
217
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
218 219 220
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
221 222 223 224 225 226
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
227 228
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
229
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
230 231 232
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
233

234
    @print_mapping_info
235 236 237
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
238

239 240
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
241 242 243
        inputs = {'x': val_x, 'y': val_y}
        node.fluid_code.add_layer(
            op_type, inputs=inputs, output=node, param_attr=None)
C
channingss 已提交
244

245
    @print_mapping_info
C
update  
channingss 已提交
246
    def place_holder(self, node):
C
channingss 已提交
247
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
248

C
channings 已提交
249 250
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
251 252 253
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
254
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
255 256
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
257
            "shape": shape,
C
update  
channingss 已提交
258 259 260 261
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

262 263
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
264

265
    @print_mapping_info
C
update  
channingss 已提交
266 267 268 269
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
270
        shape = node.out_shapes[0]
C
channingss 已提交
271 272
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
273 274 275 276 277 278 279
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
310
    def _interpolate(self, node):
C
channingss 已提交
311
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
312
        inputs = {'input': val_x}
313
        if node.layer_type == 'Resize':
C
Channingss 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
340 341
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
342
            inputs['scale'] = val_scales
R
root 已提交
343 344

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
345 346
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
347
        if 'linear' in mode:
R
root 已提交
348 349 350
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
351
            fluid_op = 'resize_bilinear'
352
        attr['align_corners'] = False
353
        node.fluid_code.add_layer(
C
Channingss 已提交
354
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
355

356
    @print_mapping_info
C
channings 已提交
357 358 359
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
360 361 362

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
363 364 365
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
366 367 368 369 370
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
371 372 373 374 375 376 377 378
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
379 380 381
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
382

C
channings 已提交
383 384 385
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
386 387 388 389
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
390 391 392 393 394 395 396 397
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
398
    def Pad(self, node, op_independent=True):
C
channingss 已提交
399
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
400 401 402
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
403 404
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
405 406
        assume_pad2d = False
        attr = {}
C
channings 已提交
407
        paddings = []
C
update  
channingss 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
427 428 429 430
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
431 432 433
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
434 435
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
436 437
        else:
            attr['name'] = string(node.layer_name + '_paded')
438 439 440 441 442
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
443 444
            return node.layer_name + '_paded'

445
    @print_mapping_info
C
update  
channingss 已提交
446
    def Unsqueeze(self, node):
C
channingss 已提交
447
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
448
        axes = node.get_attr('axes')
449
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
450
        if len(val_x.out_shapes[0]) == 0:
451 452 453 454 455 456
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
457
        else:
C
update  
Channingss 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            if str(val_x.dtype) == 'bool':
                val_x_cast = val_x.layer_name + '_cast'
                node.fluid_code.add_layer(
                    'cast',
                    inputs=val_x,
                    output=val_x_cast,
                    param_attr={'dtype': string('int64')})
                node.fluid_code.add_layer(
                    'unsqueeze',
                    inputs=val_x_cast,
                    output=node,
                    param_attr=attr)
            else:
                node.fluid_code.add_layer(
                    'unsqueeze', inputs=val_x, output=node, param_attr=attr)
473

474
    @print_mapping_info
C
channingss 已提交
475
    def Shrink(self, node):
C
channingss 已提交
476
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
477 478 479 480
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
481 482
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
483

484
    @print_mapping_info
C
update  
channingss 已提交
485 486 487 488 489 490 491 492
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
493

C
update  
channingss 已提交
494
        shape = node.get_attr('shape', None)
R
root 已提交
495

C
update  
channingss 已提交
496
        if shape is None:
C
channingss 已提交
497
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
498 499
        if shape is None:
            shape = list(value.shape)
500 501 502 503
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
504
        if len(value) == 1:
C
channingss 已提交
505
            value = value.tolist()
C
update  
channingss 已提交
506 507 508 509 510
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
511 512
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
513
        else:
514 515
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
516 517 518 519 520 521 522 523
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
524 525
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
526

527
    @print_mapping_info
C
update  
channingss 已提交
528
    def Resize(self, node):
529 530
        self._interpolate(node)

531
    @print_mapping_info
532 533 534
    def Upsample(self, node):
        self._interpolate(node)

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
550
    def Expand(self, node):
C
channingss 已提交
551
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
552
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
553
        val_x_dtype = val_x.dtype
R
root 已提交
554
        name_ones = node.layer_name + '_ones'
C
Channingss 已提交
555 556 557 558 559
        attr_ones = {
            'shape': val_shape.layer_name,
            'dtype': string(val_x_dtype),
            'value': 1
        }
560
        node.fluid_code.add_layer(
C
Channingss 已提交
561 562 563 564
            'fill_constant',
            inputs=None,
            output=name_ones,
            param_attr=attr_ones)
R
root 已提交
565
        inputs = {'x': name_ones, 'y': val_x}
566 567 568 569
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
C
Channingss 已提交
570
            param_attr=None)
C
update  
channingss 已提交
571

572
    @print_mapping_info
C
channingss 已提交
573 574 575 576
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
577
        axis = node.get_attr('axis', 0)
578 579
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
580
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
            if len(val_x.out_shapes[0]) <= 1:
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices},
                    output=node,
                    param_attr=None)
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
                    gather_ = node.layer_name + '_1'
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=gather_,
                        param_attr=None)
                    node.fluid_code.add_layer(
                        'squeeze',
                        inputs={'input': gather_,
                                'axes': [0]},
                        output=node,
                        param_attr=None)
                else:
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=node,
                        param_attr=None)
C
channingss 已提交
610 611
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
612 613 614
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
615 616 617 618 619 620 621 622 623 624 625 626 627
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
628 629 630 631
            if len(indices_shape) < 1:
                node.fluid_code.add_layer(
                    'squeeze',
                    inputs={'input': node,
C
Channingss 已提交
632
                            'axes': [axis]},
C
Channingss 已提交
633 634
                    output=node,
                    param_attr=None)
635 636 637
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
C
Channingss 已提交
638
                indices_cast = indices.layer_name + '_cast'
C
update  
Channingss 已提交
639 640 641
                node.fluid_code.add_layer(
                    'cast',
                    inputs=indices,
C
Channingss 已提交
642
                    output=indices_cast,
C
update  
Channingss 已提交
643
                    param_attr={'dtype': string('int64')})
644 645
                node.fluid_code.add_layer(
                    'embedding',
C
Channingss 已提交
646
                    inputs=indices_cast,
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
682
            from functools import reduce
R
root 已提交
683
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
684 685 686 687 688 689
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
690

C
Channingss 已提交
691 692 693
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
C
fix bug  
Channingss 已提交
694
            name_trans = val_x.layer_name + '_transpose'
695 696 697 698 699 700 701 702 703 704 705
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
C
fix bug  
Channingss 已提交
706
            input_transpose = node.layer_name + '_transpose'
707
            node.fluid_code.add_layer(
C
fix bug  
Channingss 已提交
708 709 710 711
                'transpose',
                inputs=node,
                output=input_transpose,
                param_attr=attr_trans)
C
Channingss 已提交
712 713 714 715 716 717
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
718 719
            node.fluid_code.add_layer(
                'reshape',
C
fix bug  
Channingss 已提交
720
                inputs=input_transpose,
721 722 723
                output=node,
                param_attr={'shape': reshaped_shape})

C
Channingss 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                'scatter',
                inputs={'input': val_x,
                        'index': indices,
                        'updates': updates},
                output=node,
                param_attr=None)
        else:
            input_inner_indices = node.layer_name + '_input_inner_indices'
739 740 741 742 743 744 745 746
            shape = val_x.out_shapes[0]
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices.layer_name,
                output=indices.layer_name,
                param_attr={'shape': indices.out_shapes[0]})

            zeros_like_val_x = val_x.layer_name + '_zeros'
C
Channingss 已提交
747
            node.fluid_code.add_layer(
748 749 750 751 752 753
                'zeros_like',
                inputs=val_x,
                output=zeros_like_val_x,
                param_attr=None)
            node.fluid_code.add_layer(
                'scatter_nd_add',
C
Channingss 已提交
754
                inputs={
755
                    'ref': zeros_like_val_x,
C
Channingss 已提交
756 757 758 759 760
                    'index': indices,
                    'updates': updates
                },
                output=input_inner_indices,
                param_attr=None)
761
            indices_mask = node.layer_name + '_indices_mask'
C
Channingss 已提交
762
            constant_minus_one = node.layer_name + '_constant_minus_one'
763
            # full_like support create tensor shape like input tensor
C
Channingss 已提交
764
            node.fluid_code.add_layer(
765 766
                'full_like',
                inputs=updates,
C
Channingss 已提交
767
                output=constant_minus_one,
768 769
                param_attr={'dtype': string(updates.dtype),
                            'fill_value': -1})
C
Channingss 已提交
770
            node.fluid_code.add_layer(
771
                'scatter_nd_add',
C
Channingss 已提交
772
                inputs={
773
                    'ref': zeros_like_val_x,
C
Channingss 已提交
774 775 776 777 778
                    'index': indices,
                    'updates': constant_minus_one
                },
                output=indices_mask,
                param_attr=None)
779 780
            constant_one = node.layer_name + '_constant_1'
            # full_like support create tensor shape like input tensor
C
Channingss 已提交
781
            node.fluid_code.add_layer(
782 783 784 785 786
                'full_like',
                inputs=val_x,
                output=constant_one,
                param_attr={'dtype': string(val_x.dtype),
                            'fill_value': 1})
C
Channingss 已提交
787 788 789 790
            input_out_indices_mask = node.layer_name + '_input_out_indices_mask'
            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": indices_mask,
791
                        "y": constant_one},
C
Channingss 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
                output=input_out_indices_mask,
                param_attr=None)

            input_out_indices = node.layer_name + '_input_out_indices'
            node.fluid_code.add_layer(
                "elementwise_mul",
                inputs={"x": val_x,
                        "y": input_out_indices_mask},
                output=input_out_indices,
                param_attr=None)

            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
                output=node,
                param_attr=None)

810 811 812 813 814 815 816 817 818 819 820 821 822 823
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
824
    def Slice(self, node):
C
channingss 已提交
825
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
826
        starts, ends, axes, steps = None, None, None, None
827
        attr = {}
C
channingss 已提交
828 829 830
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
C
Channingss 已提交
831 832 833
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)

R
root 已提交
834
            if len(node.inputs) > 3:
C
channings 已提交
835
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
836
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
837
            if len(node.inputs) > 4:
C
channings 已提交
838
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
839
                steps = _const_weight_or_none(steps)
840 841 842 843 844 845 846 847
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
C
Channingss 已提交
848
                starts_value = starts_value.copy()
849
                ends_value = ends_value.copy()
850 851 852 853
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
854
                for idx in range(len(ends_value)):
855 856
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]]:
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
857
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
858
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
859
                    elif ends_value[idx] > 2**31 - 1:
860 861 862 863 864 865 866 867
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
C
fix bug  
Channingss 已提交
868
                    starts_cast = starts.layer_name + '_cast'
869 870 871
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
C
fix bug  
Channingss 已提交
872
                        output=starts_cast,
873
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
874
                    attr['starts'] = starts_cast
875
                if ends.dtype != 'int32':
C
update  
Channingss 已提交
876
                    ends_cast = ends.layer_name + '_cast'
C
Channingss 已提交
877 878 879 880 881 882
                node.fluid_code.add_layer(
                    'cast',
                    inputs=ends,
                    output=ends_cast,
                    param_attr={'dtype': string('int32')})
                attr['ends'] = ends_cast
C
channingss 已提交
883 884 885 886
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
887 888 889 890
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
891

C
Channingss 已提交
892 893 894
        if steps is not None:
            attr['strides'] = steps
            node.fluid_code.add_layer(
895
                'strided_slice', inputs=val_x, output=node, param_attr=attr)
C
Channingss 已提交
896 897
        else:
            node.fluid_code.add_layer(
898
                'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
899

900
    @print_mapping_info
C
update  
channingss 已提交
901
    def ConstantOfShape(self, node):
C
channingss 已提交
902
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
903
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
904 905 906 907

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
908 909
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
910 911
        if len(value) == 1:
            value = value[0]
912 913 914 915 916 917 918
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
919

C
Channingss 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            attr = {
                'max': max_value,
                'min': min_value,
            }
            node.fluid_code.add_layer(
                'clip', inputs=val_x, output=node, param_attr=attr)
        else:
            max_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            min_ipt = self.graph.get_input_node(node, idx=2, copy=True)
            max_value = _const_weight_or_none(max_ipt)
            min_value = _const_weight_or_none(min_ipt)
            self.omit_nodes.append(max_ipt.layer_name)
            self.omit_nodes.append(min_ipt.layer_name)
941
            if max_value.shape == (1, ):
C
Channingss 已提交
942
                max_value = max_value[0]
943
            if min_value.shape == (1, ):
C
Channingss 已提交
944 945
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
946
            attr = {'max': max_value, 'min': min_value}
C
Channingss 已提交
947 948 949 950 951
            node.fluid_code.add_layer(
                'clip', inputs=val_x, output=node, param_attr=attr)
        else:
            raise

952
    @print_mapping_info
C
update  
channingss 已提交
953
    def Split(self, node):
C
channingss 已提交
954 955
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
956 957

        fluid_op = 'split'
C
channingss 已提交
958
        split = node.get_attr('split')
C
update  
channingss 已提交
959
        axis = node.get_attr('axis', 0)
C
channingss 已提交
960 961 962 963 964
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
965

966 967
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
968

969
    @print_mapping_info
C
update  
channingss 已提交
970
    def Reshape(self, node):
C
channingss 已提交
971 972
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
973
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
974 975 976 977 978 979 980 981 982 983
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
C
Channingss 已提交
984 985
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
C
Channingss 已提交
986 987 988 989 990 991
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': node.out_shapes[0]},
                output=node,
                param_attr=attr)
992 993 994 995 996 997 998
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
999 1000 1001 1002 1003 1004 1005
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
1006 1007 1008 1009 1010 1011 1012
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
1013 1014 1015 1016 1017 1018 1019
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
1020 1021 1022 1023 1024 1025 1026 1027
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
1028
    def Cast(self, node):
C
channingss 已提交
1029
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
1040 1041
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
1042

C
Channingss 已提交
1043 1044 1045 1046 1047
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        node.fluid_code.add_layer('logical_not', inputs=val_input, output=node)

1048
    @print_mapping_info
C
update  
channingss 已提交
1049
    def AveragePool(self, node):
C
channingss 已提交
1050
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1051 1052

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1053 1054 1055 1056 1057 1058 1059 1060
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1061

C
channingss 已提交
1062 1063
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1064
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1065
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1066 1067 1068 1069 1070
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1071

C
update  
channingss 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

1082 1083
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1084

1085
    @print_mapping_info
C
update  
channingss 已提交
1086 1087
    def Concat(self, node):
        inputs = []
C
Channingss 已提交
1088
        dtypes = set()
C
update  
channingss 已提交
1089
        for i in range(len(node.layer.input)):
C
channingss 已提交
1090
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
1091 1092 1093 1094
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
C
Channingss 已提交
1095 1096 1097
                dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1098 1099
        axis = node.get_attr('axis')
        attr = {'axis': axis}
1100 1101
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1102

1103
    @print_mapping_info
C
update  
channingss 已提交
1104
    def Flatten(self, node):
C
channingss 已提交
1105
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1106 1107
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
1108 1109
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1110

1111
    @print_mapping_info
C
update  
channingss 已提交
1112
    def Gemm(self, node):
C
channingss 已提交
1113 1114 1115
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
1129 1130 1131 1132 1133
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
1134

C
update  
channingss 已提交
1135 1136 1137 1138
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
1139 1140 1141 1142 1143
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1144
            else:
C
channingss 已提交
1145 1146
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
1147 1148 1149 1150 1151
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
1152 1153 1154

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
1155 1156 1157 1158 1159
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1160

1161
    @print_mapping_info
C
update  
channingss 已提交
1162
    def Sum(self, node):
1163
        val_inps = node.layer.input
1164
        inputs = {
1165 1166 1167 1168
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1169 1170
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1171

C
channingss 已提交
1172 1173
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1174 1175
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1176
                "y": y,
1177
            }
1178 1179
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1180

1181
    @print_mapping_info
C
update  
channingss 已提交
1182
    def MatMul(self, node):
C
channingss 已提交
1183 1184
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1185 1186
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1187
        inputs = {"x": val_x, "y": val_y}
C
Channingss 已提交
1188
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
C
Channingss 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
            y_squeeze = val_y.layer_name + '_squeeze'
            node.fluid_code.add_layer(
                "squeeze",
                inputs=val_y,
                output=y_squeeze,
                param_attr={'axes': [0]})
            inputs['y'] = y_squeeze
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
        else:
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
C
update  
channingss 已提交
1201

1202
    @print_mapping_info
C
update  
channingss 已提交
1203
    def BatchNormalization(self, node):
C
channingss 已提交
1204 1205 1206 1207 1208
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1218 1219
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1220 1221 1222 1223
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1224
            "is_test": True,
C
update  
channingss 已提交
1225 1226 1227 1228
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1229
            "use_global_stats": spatial,
C
update  
channingss 已提交
1230 1231
            "name": string(node.layer_name)
        }
1232 1233
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1234

1235
    @print_mapping_info
C
update  
channingss 已提交
1236
    def Transpose(self, node):
C
channingss 已提交
1237
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1238 1239
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1240 1241
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1242

1243
    @print_mapping_info
C
update  
channingss 已提交
1244
    def Relu(self, node):
C
channingss 已提交
1245
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1246
        attr = {"name": string(node.layer_name)}
1247 1248
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1249

1250
    @print_mapping_info
C
update  
channingss 已提交
1251
    def PRelu(self, node):
C
channingss 已提交
1252 1253
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1254

C
channingss 已提交
1255 1256
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
C
Channingss 已提交
1257 1258

        if shape_slope == [1]:
C
channingss 已提交
1259 1260 1261
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
C
Channingss 已提交
1262 1263 1264 1265 1266 1267 1268 1269

        if mode == 'channel' and len(shape_slope) == 1:
            # paddle params shape need be [1, channel]
            slope_data = _const_weight_or_none(val_slope)
            slope_data = np.reshape(slope_data, [1] + shape_slope)
            self.weights[val_slope.layer_name] = slope_data

        self.omit_nodes.append(val_slope.layer_name)
C
channingss 已提交
1270 1271 1272 1273
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1274 1275
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1276

1277
    @print_mapping_info
C
update  
channingss 已提交
1278
    def Squeeze(self, node):
C
channingss 已提交
1279 1280 1281
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1282 1283 1284 1285 1286 1287 1288 1289 1290
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1291

1292
    @print_mapping_info
C
channings 已提交
1293 1294 1295
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1296 1297 1298 1299 1300 1301 1302
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1314
    @print_mapping_info
C
channings 已提交
1315 1316 1317 1318
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1319

C
channings 已提交
1320
        not_condition = condition.layer_name + '_not'
1321 1322 1323 1324 1325
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1326
        cast_not_condition = not_condition + '_cast'
1327 1328 1329 1330 1331
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1332
        cast_condition = condition.layer_name + '_cast'
1333 1334 1335 1336 1337
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1338
        mul_val_x = val_x.layer_name + '_mul'
1339 1340 1341 1342 1343 1344
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
C
channings 已提交
1345
        mul_val_y = val_y.layer_name + '_mul'
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1361 1362
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1382
    def Identity(self, node):
C
channingss 已提交
1383
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1384
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1385

1386
    @print_mapping_info
C
channings 已提交
1387 1388 1389 1390
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1391

1392 1393
        if repeats is None:
            repeats = val_repeats.layer_name
J
jiangjiajun 已提交
1394 1395 1396
            if val_repeats.dtype != 'int32':
                attr = {"dtype": string("int32")}
                node.fluid_code.add_layer(
C
Channingss 已提交
1397 1398
                    "cast",
                    inputs=repeats,
J
jiangjiajun 已提交
1399 1400
                    output="{}.tmp".format(repeats),
                    param_attr=attr)
J
jiangjiajun 已提交
1401 1402
                repeats = "{}.tmp".format(repeats)

1403
        elif isinstance(repeats, int):
C
channings 已提交
1404
            repeats = [repeats]
R
root 已提交
1405

C
channings 已提交
1406
        attr = {
R
root 已提交
1407
            'expand_times': repeats,
C
channings 已提交
1408 1409
            "name": string(node.layer_name),
        }
1410 1411
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1412

1413
    @print_mapping_info
C
update  
channingss 已提交
1414
    def MaxPool(self, node):
C
channingss 已提交
1415
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1416
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1428

C
channingss 已提交
1429 1430
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1431
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1432
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1433 1434 1435 1436 1437
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1438

C
update  
channingss 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1448 1449
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1450

C
channings 已提交
1451
    def _global_pool(self, node):
C
channingss 已提交
1452
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1453
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1454
        fluid_op = 'pool2d'
C
channings 已提交
1455 1456 1457 1458 1459 1460
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1461
        attr = {
C
channings 已提交
1462
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1463 1464 1465
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1466 1467
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1468

1469
    @print_mapping_info
C
channings 已提交
1470 1471
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1472

1473
    @print_mapping_info
C
channings 已提交
1474 1475
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1476

1477
    @print_mapping_info
C
update  
channingss 已提交
1478
    def Conv(self, node):
C
channingss 已提交
1479 1480
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1481 1482 1483 1484 1485 1486
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1487
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1488 1489 1490
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1491
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1492 1493
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1494
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1495 1496 1497
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1498 1499 1500
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1501

C
channingss 已提交
1502
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1503 1504
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1505
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1506 1507 1508 1509 1510
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1526 1527
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1528

1529
    @print_mapping_info
C
channingss 已提交
1530
    def ConvTranspose(self, node):
C
channingss 已提交
1531 1532
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1533
        val_b = None
R
root 已提交
1534
        if len(node.layer.input) > 2:
C
channingss 已提交
1535 1536
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1537 1538 1539 1540 1541 1542
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1543
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1544 1545 1546
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1547
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1548 1549
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1550 1551 1552 1553 1554
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1555 1556 1557 1558

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1559

1560 1561
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1562
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1563 1564
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1565 1566
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
C
Channingss 已提交
1567
            'num_filters': num_out_channels * num_groups,
C
channingss 已提交
1568 1569 1570 1571 1572 1573 1574
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1575
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1576 1577
            'name': string(node.layer_name),
        }
1578 1579
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)