opset.py 57.5 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46 47 48 49 50 51
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
52
        if dim < -1:
C
Channingss 已提交
53 54 55 56 57 58 59 60
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


C
Channingss 已提交
61
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
62 63 64 65 66 67 68
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
86
class OpSet9():
87 88 89 90 91
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
92 93
        'Pow': 'elementwise_pow',
    }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
129 130 131 132
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
157
    default_ioa_constraint = {}
158 159

    def __init__(self, decoder):
C
Channingss 已提交
160
        super(OpSet9, self).__init__()
161
        self.graph = decoder.graph
C
update  
channingss 已提交
162 163 164
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
165
        self.used_custom_layers = dict()
R
root 已提交
166

167
    @print_mapping_info
C
channingss 已提交
168
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
169 170 171 172
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
173 174 175
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
176 177 178 179 180 181 182 183
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
184
            fill_name_field, ) = info
C
update  
channingss 已提交
185

186 187
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
188 189 190 191 192 193 194 195 196 197 198 199
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
200
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
201
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
202 203 204 205
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
206 207 208
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
209
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
210
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
211
            attr['name'] = string(node.layer_name)
212 213 214 215 216 217 218 219 220 221
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
222 223 224
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
225
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
226 227 228
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
229 230 231 232 233 234
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
235 236
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
237
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
238 239 240
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
241

242
    @print_mapping_info
243 244 245
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
246

247 248
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
249 250 251
        inputs = {'x': val_x, 'y': val_y}
        node.fluid_code.add_layer(
            op_type, inputs=inputs, output=node, param_attr=None)
C
channingss 已提交
252

253
    @print_mapping_info
C
update  
channingss 已提交
254
    def place_holder(self, node):
C
channingss 已提交
255
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
256

C
channings 已提交
257 258
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
259 260 261
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
262
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
263 264
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
265
            "shape": shape,
C
update  
channingss 已提交
266 267 268 269
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

270 271
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
272

273
    @print_mapping_info
C
update  
channingss 已提交
274 275 276 277
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
278
        shape = node.out_shapes[0]
C
channingss 已提交
279 280
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
281 282 283 284 285 286 287
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
318
    def _interpolate(self, node):
C
channingss 已提交
319
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
320
        inputs = {'input': val_x}
321
        if node.layer_type == 'Resize':
C
Channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
348 349
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
350
            inputs['scale'] = val_scales
R
root 已提交
351 352

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
353 354
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
355
        if 'linear' in mode:
R
root 已提交
356 357 358
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
359
            fluid_op = 'resize_bilinear'
360
        node.fluid_code.add_layer(
C
Channingss 已提交
361
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
362

363
    @print_mapping_info
C
channings 已提交
364 365 366
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367 368 369

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
370 371 372
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
373 374 375 376 377
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
378 379 380 381 382 383 384 385
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
386 387 388
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
389

C
channings 已提交
390 391 392
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
393 394 395 396
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
397 398 399 400 401 402 403 404
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
405
    def Pad(self, node, op_independent=True):
C
channingss 已提交
406
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
407 408 409
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
410 411
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
433 434 435 436
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
437 438 439
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
440 441
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
442 443
        else:
            attr['name'] = string(node.layer_name + '_paded')
444 445 446 447 448
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
449 450
            return node.layer_name + '_paded'

451
    @print_mapping_info
C
update  
channingss 已提交
452
    def Unsqueeze(self, node):
C
channingss 已提交
453
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
454
        axes = node.get_attr('axes')
455
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
456
        if len(val_x.out_shapes[0]) == 0:
457 458 459 460 461 462
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
463
        else:
C
update  
Channingss 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            if str(val_x.dtype) == 'bool':
                val_x_cast = val_x.layer_name + '_cast'
                node.fluid_code.add_layer(
                    'cast',
                    inputs=val_x,
                    output=val_x_cast,
                    param_attr={'dtype': string('int64')})
                node.fluid_code.add_layer(
                    'unsqueeze',
                    inputs=val_x_cast,
                    output=node,
                    param_attr=attr)
            else:
                node.fluid_code.add_layer(
                    'unsqueeze', inputs=val_x, output=node, param_attr=attr)
479

480
    @print_mapping_info
C
channingss 已提交
481
    def Shrink(self, node):
C
channingss 已提交
482
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
483 484 485 486
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
487 488
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
489

490
    @print_mapping_info
C
update  
channingss 已提交
491 492 493 494 495 496 497 498
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
499

C
update  
channingss 已提交
500
        shape = node.get_attr('shape', None)
R
root 已提交
501

C
update  
channingss 已提交
502
        if shape is None:
C
channingss 已提交
503
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
504 505
        if shape is None:
            shape = list(value.shape)
506 507 508 509
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
510
        if len(value) == 1:
C
channingss 已提交
511
            value = value.tolist()
C
update  
channingss 已提交
512 513 514 515 516
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
517 518
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
519
        else:
520 521
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
522 523 524 525 526 527 528 529
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
530 531
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
532

533
    @print_mapping_info
C
update  
channingss 已提交
534
    def Resize(self, node):
535 536
        self._interpolate(node)

537
    @print_mapping_info
538 539 540
    def Upsample(self, node):
        self._interpolate(node)

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
556
    def Expand(self, node):
C
channingss 已提交
557
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
558
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
559 560

        if len(val_shape.outputs) == 1:
561 562
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
563
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
564
        out_shape = node.out_shapes[0]
565
        val_x_dtype = val_x.dtype
R
root 已提交
566 567 568

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
569 570
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
571 572
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
573 574 575 576 577
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
578

579
    @print_mapping_info
C
channingss 已提交
580 581 582 583
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
584
        axis = node.get_attr('axis', 0)
585 586
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
587
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
            if len(val_x.out_shapes[0]) <= 1:
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices},
                    output=node,
                    param_attr=None)
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
                    gather_ = node.layer_name + '_1'
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=gather_,
                        param_attr=None)
                    node.fluid_code.add_layer(
                        'squeeze',
                        inputs={'input': gather_,
                                'axes': [0]},
                        output=node,
                        param_attr=None)
                else:
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=node,
                        param_attr=None)
C
channingss 已提交
617 618
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
619 620 621
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
622 623 624 625 626 627 628 629 630 631 632 633 634
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
635 636 637 638
            if len(indices_shape) < 1:
                node.fluid_code.add_layer(
                    'squeeze',
                    inputs={'input': node,
C
Channingss 已提交
639
                            'axes': [axis]},
C
Channingss 已提交
640 641
                    output=node,
                    param_attr=None)
642 643 644
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
C
Channingss 已提交
645
                indices_cast = indices.layer_name + '_cast'
C
update  
Channingss 已提交
646 647 648
                node.fluid_code.add_layer(
                    'cast',
                    inputs=indices,
C
Channingss 已提交
649
                    output=indices_cast,
C
update  
Channingss 已提交
650
                    param_attr={'dtype': string('int64')})
651 652
                node.fluid_code.add_layer(
                    'embedding',
C
Channingss 已提交
653
                    inputs=indices_cast,
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
689
            from functools import reduce
R
root 已提交
690
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
691 692 693 694 695 696
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
697

C
Channingss 已提交
698 699 700
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
C
fix bug  
Channingss 已提交
701
            name_trans = val_x.layer_name + '_transpose'
702 703 704 705 706 707 708 709 710 711 712
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
C
fix bug  
Channingss 已提交
713
            input_transpose = node.layer_name + '_transpose'
714
            node.fluid_code.add_layer(
C
fix bug  
Channingss 已提交
715 716 717 718
                'transpose',
                inputs=node,
                output=input_transpose,
                param_attr=attr_trans)
C
Channingss 已提交
719 720 721 722 723 724
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
725 726
            node.fluid_code.add_layer(
                'reshape',
C
fix bug  
Channingss 已提交
727
                inputs=input_transpose,
728 729 730
                output=node,
                param_attr={'shape': reshaped_shape})

C
Channingss 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                'scatter',
                inputs={'input': val_x,
                        'index': indices,
                        'updates': updates},
                output=node,
                param_attr=None)
        else:
            input_inner_indices = node.layer_name + '_input_inner_indices'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': updates
                },
                output=input_inner_indices,
                param_attr=None)

            constant_minus_one = node.layer_name + '_constant_minus_one'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_minus_one,
                param_attr={
                    'shape': updates.out_shapes[0],
                    'dtype': string(updates.dtype),
                    'value': -1
                })

            indices_mask = node.layer_name + '_indices_mask'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': constant_minus_one
                },
                output=indices_mask,
                param_attr=None)

            constant_1 = node.layer_name + '_constant_1'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_1,
                param_attr={
                    'shape': val_x.out_shapes[0],
                    'dtype': string(val_x.dtype),
                    'value': 1
                })
            input_out_indices_mask = node.layer_name + '_input_out_indices_mask'
            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": indices_mask,
                        "y": constant_1},
                output=input_out_indices_mask,
                param_attr=None)

            input_out_indices = node.layer_name + '_input_out_indices'
            node.fluid_code.add_layer(
                "elementwise_mul",
                inputs={"x": val_x,
                        "y": input_out_indices_mask},
                output=input_out_indices,
                param_attr=None)

            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
                output=node,
                param_attr=None)

811 812 813 814 815 816 817 818 819 820 821 822 823 824
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
825
    def Slice(self, node):
C
channingss 已提交
826
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
827
        starts, ends, axes, steps = None, None, None, None
828
        attr = {}
C
channingss 已提交
829 830 831
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
832
            if len(node.inputs) > 3:
C
channings 已提交
833
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
834
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
835
            if len(node.inputs) > 4:
C
channings 已提交
836
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
837
                steps = _const_weight_or_none(steps)
838 839 840 841 842 843 844
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
845 846
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
847 848 849 850 851 852 853 854 855 856 857 858 859 860
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
C
fix bug  
Channingss 已提交
861
                    starts_cast = starts.layer_name + '_cast'
862 863 864
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
C
fix bug  
Channingss 已提交
865
                        output=starts_cast,
866
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
867
                    attr['starts'] = starts_cast
868
                if ends.dtype != 'int32':
C
update  
Channingss 已提交
869
                    ends_cast = ends.layer_name + '_cast'
870 871 872
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
C
fix bug  
Channingss 已提交
873
                        output=ends_cast,
874
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
875
                    attr['ends'] = ends_cast
C
channingss 已提交
876 877 878 879
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
880 881 882 883
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
884

885 886
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
887

888
    @print_mapping_info
C
update  
channingss 已提交
889
    def ConstantOfShape(self, node):
C
channingss 已提交
890
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
891
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
892 893 894 895

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
896 897
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
898 899
        if len(value) == 1:
            value = value[0]
900 901 902 903 904 905 906
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
907

908
    @print_mapping_info
C
update  
channingss 已提交
909
    def Split(self, node):
C
channingss 已提交
910 911
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
912 913

        fluid_op = 'split'
C
channingss 已提交
914
        split = node.get_attr('split')
C
update  
channingss 已提交
915
        axis = node.get_attr('axis', 0)
C
channingss 已提交
916 917 918 919 920
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
921

922 923
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
924

925
    @print_mapping_info
C
update  
channingss 已提交
926
    def Reshape(self, node):
C
channingss 已提交
927 928
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
929
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
930 931 932 933 934 935 936 937 938 939
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
C
Channingss 已提交
940 941
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
C
Channingss 已提交
942 943 944 945 946 947
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': node.out_shapes[0]},
                output=node,
                param_attr=attr)
948 949 950 951 952 953 954
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
955 956 957 958 959 960 961
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
962 963 964 965 966 967 968
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
969 970 971 972 973 974 975
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
976 977 978 979 980 981 982 983
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
984
    def Cast(self, node):
C
channingss 已提交
985
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
986 987 988 989 990 991 992 993 994 995
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
996 997
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
998

C
Channingss 已提交
999 1000 1001 1002 1003
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        node.fluid_code.add_layer('logical_not', inputs=val_input, output=node)

1004
    @print_mapping_info
C
update  
channingss 已提交
1005
    def AveragePool(self, node):
C
channingss 已提交
1006
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1007 1008

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1009 1010 1011 1012 1013 1014 1015 1016
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1017

C
channingss 已提交
1018 1019
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1020
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1021
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1022 1023 1024 1025 1026
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1027

C
update  
channingss 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

1038 1039
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1040

1041
    @print_mapping_info
C
update  
channingss 已提交
1042 1043
    def Concat(self, node):
        inputs = []
C
Channingss 已提交
1044
        dtypes = set()
C
update  
channingss 已提交
1045
        for i in range(len(node.layer.input)):
C
channingss 已提交
1046
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
1047 1048 1049 1050
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
C
Channingss 已提交
1051 1052 1053
                dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1054 1055
        axis = node.get_attr('axis')
        attr = {'axis': axis}
1056 1057
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1058

1059
    @print_mapping_info
C
update  
channingss 已提交
1060
    def Flatten(self, node):
C
channingss 已提交
1061
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1062 1063
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
1064 1065
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1066

1067
    @print_mapping_info
C
update  
channingss 已提交
1068
    def Gemm(self, node):
C
channingss 已提交
1069 1070 1071
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
1085 1086 1087 1088 1089
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
1090

C
update  
channingss 已提交
1091 1092 1093 1094
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
1095 1096 1097 1098 1099
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1100
            else:
C
channingss 已提交
1101 1102
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
1103 1104 1105 1106 1107
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
1108 1109 1110

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
1111 1112 1113 1114 1115
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1116

1117
    @print_mapping_info
C
update  
channingss 已提交
1118
    def Sum(self, node):
1119
        val_inps = node.layer.input
1120
        inputs = {
1121 1122 1123 1124
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1125 1126
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1127

C
channingss 已提交
1128 1129
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1130 1131
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1132
                "y": y,
1133
            }
1134 1135
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1136

1137
    @print_mapping_info
C
update  
channingss 已提交
1138
    def MatMul(self, node):
C
channingss 已提交
1139 1140
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1141 1142
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1143
        inputs = {"x": val_x, "y": val_y}
C
Channingss 已提交
1144
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
C
Channingss 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
            y_squeeze = val_y.layer_name + '_squeeze'
            node.fluid_code.add_layer(
                "squeeze",
                inputs=val_y,
                output=y_squeeze,
                param_attr={'axes': [0]})
            inputs['y'] = y_squeeze
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
        else:
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
C
update  
channingss 已提交
1157

1158
    @print_mapping_info
C
update  
channingss 已提交
1159
    def BatchNormalization(self, node):
C
channingss 已提交
1160 1161 1162 1163 1164
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1174 1175
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1176 1177 1178 1179
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1180
            "is_test": True,
C
update  
channingss 已提交
1181 1182 1183 1184
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1185
            "use_global_stats": spatial,
C
update  
channingss 已提交
1186 1187
            "name": string(node.layer_name)
        }
1188 1189
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1190

1191
    @print_mapping_info
C
update  
channingss 已提交
1192
    def Transpose(self, node):
C
channingss 已提交
1193
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1194 1195
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1196 1197
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1198

1199
    @print_mapping_info
C
update  
channingss 已提交
1200
    def Relu(self, node):
C
channingss 已提交
1201
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1202
        attr = {"name": string(node.layer_name)}
1203 1204
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1205

1206
    @print_mapping_info
C
update  
channingss 已提交
1207
    def PRelu(self, node):
C
channingss 已提交
1208 1209
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1210

C
channingss 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1221 1222
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1223

1224
    @print_mapping_info
C
update  
channingss 已提交
1225
    def Squeeze(self, node):
C
channingss 已提交
1226 1227 1228
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1229 1230 1231 1232 1233 1234 1235 1236 1237
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1238

1239
    @print_mapping_info
C
channings 已提交
1240 1241 1242
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1243 1244 1245 1246 1247 1248 1249
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1261
    @print_mapping_info
C
channings 已提交
1262 1263 1264 1265
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1266

C
channings 已提交
1267
        not_condition = condition.layer_name + '_not'
1268 1269 1270 1271 1272
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1273
        cast_not_condition = not_condition + '_cast'
1274 1275 1276 1277 1278
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1279
        cast_condition = condition.layer_name + '_cast'
1280 1281 1282 1283 1284
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1285
        mul_val_x = val_x.layer_name + '_mul'
1286 1287 1288 1289 1290 1291
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
C
channings 已提交
1292
        mul_val_y = val_y.layer_name + '_mul'
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1308 1309
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1329
    def Identity(self, node):
C
channingss 已提交
1330
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1331
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1332

1333
    @print_mapping_info
C
channings 已提交
1334 1335 1336 1337
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1338

1339 1340
        if repeats is None:
            repeats = val_repeats.layer_name
J
jiangjiajun 已提交
1341 1342 1343
            if val_repeats.dtype != 'int32':
                attr = {"dtype": string("int32")}
                node.fluid_code.add_layer(
J
jiangjiajun 已提交
1344 1345 1346
                    "cast", inputs=repeats, 
                    output="{}.tmp".format(repeats),
                    param_attr=attr)
J
jiangjiajun 已提交
1347 1348
                repeats = "{}.tmp".format(repeats)

1349
        elif isinstance(repeats, int):
C
channings 已提交
1350
            repeats = [repeats]
R
root 已提交
1351

C
channings 已提交
1352
        attr = {
R
root 已提交
1353
            'expand_times': repeats,
C
channings 已提交
1354 1355
            "name": string(node.layer_name),
        }
1356 1357
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1358

1359
    @print_mapping_info
C
update  
channingss 已提交
1360
    def MaxPool(self, node):
C
channingss 已提交
1361
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1362
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1374

C
channingss 已提交
1375 1376
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1377
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1378
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1379 1380 1381 1382 1383
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1384

C
update  
channingss 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1394 1395
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1396

C
channings 已提交
1397
    def _global_pool(self, node):
C
channingss 已提交
1398
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1399
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1400
        fluid_op = 'pool2d'
C
channings 已提交
1401 1402 1403 1404 1405 1406
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1407
        attr = {
C
channings 已提交
1408
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1409 1410 1411
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1412 1413
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1414

1415
    @print_mapping_info
C
channings 已提交
1416 1417
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1418

1419
    @print_mapping_info
C
channings 已提交
1420 1421
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1422

1423
    @print_mapping_info
C
update  
channingss 已提交
1424
    def Conv(self, node):
C
channingss 已提交
1425 1426
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1427 1428 1429 1430 1431 1432
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1433
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1434 1435 1436
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1437
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1438 1439
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1440
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1441 1442 1443
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1444 1445 1446
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1447

C
channingss 已提交
1448
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1449 1450
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1451
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1452 1453 1454 1455 1456
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1472 1473
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1474

1475
    @print_mapping_info
C
channingss 已提交
1476
    def ConvTranspose(self, node):
C
channingss 已提交
1477 1478
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1479
        val_b = None
R
root 已提交
1480
        if len(node.layer.input) > 2:
C
channingss 已提交
1481 1482
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1483 1484 1485 1486 1487 1488
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1489
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1490 1491 1492
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1493
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1494 1495
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1496 1497 1498 1499 1500
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1501 1502 1503 1504

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1505

1506 1507
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1508
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1509 1510
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1521
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1522 1523
            'name': string(node.layer_name),
        }
1524 1525
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)