opset.py 57.3 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46 47 48 49 50 51
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
52
        if dim < -1:
C
Channingss 已提交
53 54 55 56 57 58 59 60
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


C
Channingss 已提交
61
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
62 63 64 65 66 67 68
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
86
class OpSet9():
87 88 89 90 91
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
92 93
        'Pow': 'elementwise_pow',
    }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
129 130 131 132
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
157
    default_ioa_constraint = {}
158 159

    def __init__(self, decoder):
C
Channingss 已提交
160
        super(OpSet9, self).__init__()
161
        self.graph = decoder.graph
C
update  
channingss 已提交
162 163 164
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
165
        self.used_custom_layers = dict()
R
root 已提交
166

167
    @print_mapping_info
C
channingss 已提交
168
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
169 170 171 172
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
173 174 175
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
176 177 178 179 180 181 182 183
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
184
            fill_name_field, ) = info
C
update  
channingss 已提交
185

186 187
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
188 189 190 191 192 193 194 195 196 197 198 199
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
200
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
201
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
202 203 204 205
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
206 207 208
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
209
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
210
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
211
            attr['name'] = string(node.layer_name)
212 213 214 215 216 217 218 219 220 221
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
222 223 224
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
225
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
226 227 228
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
229 230 231 232 233 234
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
235 236
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
237
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
238 239 240
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
241

242
    @print_mapping_info
243 244 245
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
246

247 248
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
249 250 251
        inputs = {'x': val_x, 'y': val_y}
        node.fluid_code.add_layer(
            op_type, inputs=inputs, output=node, param_attr=None)
C
channingss 已提交
252

253
    @print_mapping_info
C
update  
channingss 已提交
254
    def place_holder(self, node):
C
channingss 已提交
255
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
256

C
channings 已提交
257 258
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
259 260 261
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
262
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
263 264
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
265
            "shape": shape,
C
update  
channingss 已提交
266 267 268 269
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

270 271
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
272

273
    @print_mapping_info
C
update  
channingss 已提交
274 275 276 277
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
278
        shape = node.out_shapes[0]
C
channingss 已提交
279 280
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
281 282 283 284 285 286 287
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
318
    def _interpolate(self, node):
C
channingss 已提交
319
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
320
        inputs = {'input': val_x}
321
        if node.layer_type == 'Resize':
C
Channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
348 349
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
350
            inputs['scale'] = val_scales
R
root 已提交
351 352

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
353 354
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
355
        if 'linear' in mode:
R
root 已提交
356 357 358
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
359
            fluid_op = 'resize_bilinear'
360
        node.fluid_code.add_layer(
C
Channingss 已提交
361
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
362

363
    @print_mapping_info
C
channings 已提交
364 365 366
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367 368 369

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
370 371 372
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
373 374 375 376 377
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
378 379 380 381 382 383 384 385
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
386 387 388
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
389

C
channings 已提交
390 391 392
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
393 394 395 396
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
397 398 399 400 401 402 403 404
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
405
    def Pad(self, node, op_independent=True):
C
channingss 已提交
406
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
407 408 409
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
410 411
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
433 434 435 436
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
437 438 439
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
440 441
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
442 443
        else:
            attr['name'] = string(node.layer_name + '_paded')
444 445 446 447 448
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
449 450
            return node.layer_name + '_paded'

451
    @print_mapping_info
C
update  
channingss 已提交
452
    def Unsqueeze(self, node):
C
channingss 已提交
453
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
454
        axes = node.get_attr('axes')
455
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
456
        if len(val_x.out_shapes[0]) == 0:
457 458 459 460 461 462
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
463
        else:
C
update  
Channingss 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            if str(val_x.dtype) == 'bool':
                val_x_cast = val_x.layer_name + '_cast'
                node.fluid_code.add_layer(
                    'cast',
                    inputs=val_x,
                    output=val_x_cast,
                    param_attr={'dtype': string('int64')})
                node.fluid_code.add_layer(
                    'unsqueeze',
                    inputs=val_x_cast,
                    output=node,
                    param_attr=attr)
            else:
                node.fluid_code.add_layer(
                    'unsqueeze', inputs=val_x, output=node, param_attr=attr)
479

480
    @print_mapping_info
C
channingss 已提交
481
    def Shrink(self, node):
C
channingss 已提交
482
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
483 484 485 486
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
487 488
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
489

490 491 492 493 494 495 496 497 498 499 500
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            'greater_than',
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
C
update  
channingss 已提交
501 502 503 504 505 506 507 508
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
509

C
update  
channingss 已提交
510
        shape = node.get_attr('shape', None)
R
root 已提交
511

C
update  
channingss 已提交
512
        if shape is None:
C
channingss 已提交
513
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
514 515
        if shape is None:
            shape = list(value.shape)
516 517 518 519
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
520
        if len(value) == 1:
C
channingss 已提交
521
            value = value.tolist()
C
update  
channingss 已提交
522 523 524 525 526
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
527 528
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
529
        else:
530 531
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
532 533 534 535 536 537 538 539
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
540 541
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
542

543
    @print_mapping_info
C
update  
channingss 已提交
544
    def Resize(self, node):
545 546
        self._interpolate(node)

547
    @print_mapping_info
548 549 550
    def Upsample(self, node):
        self._interpolate(node)

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
566
    def Expand(self, node):
C
channingss 已提交
567
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
568
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
569 570

        if len(val_shape.outputs) == 1:
571 572
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
573
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
574
        out_shape = node.out_shapes[0]
575
        val_x_dtype = val_x.dtype
R
root 已提交
576 577 578

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
579 580
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
581 582
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
583 584 585 586 587
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
588

589
    @print_mapping_info
C
channingss 已提交
590 591 592 593
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
594
        axis = node.get_attr('axis', 0)
595 596
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
597
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
            if len(val_x.out_shapes[0]) <= 1:
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices},
                    output=node,
                    param_attr=None)
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
                    gather_ = node.layer_name + '_1'
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=gather_,
                        param_attr=None)
                    node.fluid_code.add_layer(
                        'squeeze',
                        inputs={'input': gather_,
                                'axes': [0]},
                        output=node,
                        param_attr=None)
                else:
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=node,
                        param_attr=None)
C
channingss 已提交
627 628
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
629 630 631
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
632 633 634 635 636 637 638 639 640 641 642 643 644
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
645 646 647 648
            if len(indices_shape) < 1:
                node.fluid_code.add_layer(
                    'squeeze',
                    inputs={'input': node,
C
Channingss 已提交
649
                            'axes': [axis]},
C
Channingss 已提交
650 651
                    output=node,
                    param_attr=None)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
                node.fluid_code.add_layer(
                    'embedding',
                    inputs=indices,
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                #indices_shape = [1,7]
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
694
            from functools import reduce
R
root 已提交
695
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
696 697 698 699 700 701
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
702

C
Channingss 已提交
703 704 705 706
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
707 708 709 710 711 712 713 714 715 716 717 718 719
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
720 721 722 723 724 725
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
726 727 728 729 730 731
            node.fluid_code.add_layer(
                'reshape',
                inputs=node,
                output=node,
                param_attr={'shape': reshaped_shape})

C
Channingss 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                'scatter',
                inputs={'input': val_x,
                        'index': indices,
                        'updates': updates},
                output=node,
                param_attr=None)
        else:
            input_inner_indices = node.layer_name + '_input_inner_indices'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': updates
                },
                output=input_inner_indices,
                param_attr=None)

            constant_minus_one = node.layer_name + '_constant_minus_one'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_minus_one,
                param_attr={
                    'shape': updates.out_shapes[0],
                    'dtype': string(updates.dtype),
                    'value': -1
                })

            indices_mask = node.layer_name + '_indices_mask'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': constant_minus_one
                },
                output=indices_mask,
                param_attr=None)

            constant_1 = node.layer_name + '_constant_1'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_1,
                param_attr={
                    'shape': val_x.out_shapes[0],
                    'dtype': string(val_x.dtype),
                    'value': 1
                })
            input_out_indices_mask = node.layer_name + '_input_out_indices_mask'
            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": indices_mask,
                        "y": constant_1},
                output=input_out_indices_mask,
                param_attr=None)

            input_out_indices = node.layer_name + '_input_out_indices'
            node.fluid_code.add_layer(
                "elementwise_mul",
                inputs={"x": val_x,
                        "y": input_out_indices_mask},
                output=input_out_indices,
                param_attr=None)

            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
                output=node,
                param_attr=None)

812 813 814 815 816 817 818 819 820 821 822 823 824 825
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
826
    def Slice(self, node):
C
channingss 已提交
827
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
828
        starts, ends, axes, steps = None, None, None, None
829
        attr = {}
C
channingss 已提交
830 831 832
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
833
            if len(node.inputs) > 3:
C
channings 已提交
834
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
835
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
836
            if len(node.inputs) > 4:
C
channings 已提交
837
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
838
                steps = _const_weight_or_none(steps)
839 840 841 842 843 844 845
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
846 847
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
                        output=starts,
                        param_attr={'dtype': string('int32')})
                if ends.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
                        output=ends,
                        param_attr={'dtype': string('int32')})
C
channingss 已提交
873 874 875 876
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
877 878 879 880
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
881

882 883
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
884

885
    @print_mapping_info
C
update  
channingss 已提交
886
    def ConstantOfShape(self, node):
C
channingss 已提交
887
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
888
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
889 890 891 892

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
893 894
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
895 896
        if len(value) == 1:
            value = value[0]
897 898 899 900 901 902 903
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
904

905
    @print_mapping_info
C
update  
channingss 已提交
906
    def Split(self, node):
C
channingss 已提交
907 908
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
909 910

        fluid_op = 'split'
C
channingss 已提交
911
        split = node.get_attr('split')
C
update  
channingss 已提交
912
        axis = node.get_attr('axis', 0)
C
channingss 已提交
913 914 915 916 917
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
918

919 920
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
921

922
    @print_mapping_info
C
update  
channingss 已提交
923
    def Reshape(self, node):
C
channingss 已提交
924 925
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
926
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
927 928 929 930 931 932 933 934 935 936
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
C
Channingss 已提交
937 938
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
C
Channingss 已提交
939 940 941 942 943 944
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': node.out_shapes[0]},
                output=node,
                param_attr=attr)
945 946 947 948 949 950 951
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
952 953 954 955 956 957 958
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
959 960 961 962 963 964 965
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
966 967 968 969 970 971 972
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
973 974 975 976 977 978 979 980
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
981
    def Cast(self, node):
C
channingss 已提交
982
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
983 984 985 986 987 988 989 990 991 992
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
993 994
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
995

C
Channingss 已提交
996 997 998 999 1000
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        node.fluid_code.add_layer('logical_not', inputs=val_input, output=node)

1001
    @print_mapping_info
C
update  
channingss 已提交
1002
    def AveragePool(self, node):
C
channingss 已提交
1003
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1004 1005

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1006 1007 1008 1009 1010 1011 1012 1013
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1014

C
channingss 已提交
1015 1016
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1017
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1018
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1019 1020 1021 1022 1023
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1024

C
update  
channingss 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

1035 1036
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1037

1038
    @print_mapping_info
C
update  
channingss 已提交
1039 1040
    def Concat(self, node):
        inputs = []
C
Channingss 已提交
1041
        dtypes = set()
C
update  
channingss 已提交
1042
        for i in range(len(node.layer.input)):
C
channingss 已提交
1043
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
1044 1045 1046 1047
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
C
Channingss 已提交
1048 1049 1050
                dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1051 1052
        axis = node.get_attr('axis')
        attr = {'axis': axis}
1053 1054
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1055

1056
    @print_mapping_info
C
update  
channingss 已提交
1057
    def Flatten(self, node):
C
channingss 已提交
1058
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1059 1060
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
1061 1062
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1063

1064
    @print_mapping_info
C
update  
channingss 已提交
1065
    def Gemm(self, node):
C
channingss 已提交
1066 1067 1068
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
1082 1083 1084 1085 1086
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
1087

C
update  
channingss 已提交
1088 1089 1090 1091
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
1092 1093 1094 1095 1096
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1097
            else:
C
channingss 已提交
1098 1099
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
1100 1101 1102 1103 1104
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
1105 1106 1107

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
1108 1109 1110 1111 1112
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1113

1114
    @print_mapping_info
C
update  
channingss 已提交
1115
    def Sum(self, node):
1116
        val_inps = node.layer.input
1117
        inputs = {
1118 1119 1120 1121
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1122 1123
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1124

C
channingss 已提交
1125 1126
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1127 1128
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1129
                "y": y,
1130
            }
1131 1132
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1133

1134
    @print_mapping_info
C
update  
channingss 已提交
1135
    def MatMul(self, node):
C
channingss 已提交
1136 1137
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1138 1139
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1140
        inputs = {"x": val_x, "y": val_y}
C
Channingss 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        if y_shape[0] == 1 and x_shape[-1] != 1:
            y_squeeze = val_y.layer_name + '_squeeze'
            node.fluid_code.add_layer(
                "squeeze",
                inputs=val_y,
                output=y_squeeze,
                param_attr={'axes': [0]})
            inputs['y'] = y_squeeze
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
        else:
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
C
update  
channingss 已提交
1154

1155
    @print_mapping_info
C
update  
channingss 已提交
1156
    def BatchNormalization(self, node):
C
channingss 已提交
1157 1158 1159 1160 1161
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1171 1172
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1173 1174 1175 1176
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1177
            "is_test": True,
C
update  
channingss 已提交
1178 1179 1180 1181
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1182
            "use_global_stats": spatial,
C
update  
channingss 已提交
1183 1184
            "name": string(node.layer_name)
        }
1185 1186
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1187

1188
    @print_mapping_info
C
update  
channingss 已提交
1189
    def Transpose(self, node):
C
channingss 已提交
1190
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1191 1192
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1193 1194
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1195

1196
    @print_mapping_info
C
update  
channingss 已提交
1197
    def Relu(self, node):
C
channingss 已提交
1198
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1199
        attr = {"name": string(node.layer_name)}
1200 1201
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1202

1203
    @print_mapping_info
C
update  
channingss 已提交
1204
    def PRelu(self, node):
C
channingss 已提交
1205 1206
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1207

C
channingss 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1218 1219
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1220

1221
    @print_mapping_info
C
update  
channingss 已提交
1222
    def Squeeze(self, node):
C
channingss 已提交
1223 1224 1225
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1226 1227 1228 1229 1230 1231 1232 1233 1234
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1235

1236
    @print_mapping_info
C
channings 已提交
1237 1238 1239
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1240 1241 1242 1243 1244 1245 1246
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1258
    @print_mapping_info
C
channings 已提交
1259 1260 1261 1262
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1263

C
channings 已提交
1264
        not_condition = condition.layer_name + '_not'
1265 1266 1267 1268 1269
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1270
        cast_not_condition = not_condition + '_cast'
1271 1272 1273 1274 1275
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1276
        cast_condition = condition.layer_name + '_cast'
1277 1278 1279 1280 1281
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1282
        mul_val_x = val_x.layer_name + '_mul'
1283 1284 1285 1286 1287 1288
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
R
root 已提交
1289

C
channings 已提交
1290
        mul_val_y = val_y.layer_name + '_mul'
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1306 1307
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1327
    def Identity(self, node):
C
channingss 已提交
1328
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1329
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1330

1331
    @print_mapping_info
C
channings 已提交
1332 1333 1334 1335
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1336

1337 1338
        if repeats is None:
            repeats = val_repeats.layer_name
J
jiangjiajun 已提交
1339 1340 1341
            if val_repeats.dtype != 'int32':
                attr = {"dtype": string("int32")}
                node.fluid_code.add_layer(
J
jiangjiajun 已提交
1342 1343 1344
                    "cast", inputs=repeats, 
                    output="{}.tmp".format(repeats),
                    param_attr=attr)
J
jiangjiajun 已提交
1345 1346
                repeats = "{}.tmp".format(repeats)

1347
        elif isinstance(repeats, int):
C
channings 已提交
1348
            repeats = [repeats]
R
root 已提交
1349

C
channings 已提交
1350
        attr = {
R
root 已提交
1351
            'expand_times': repeats,
C
channings 已提交
1352 1353
            "name": string(node.layer_name),
        }
1354 1355
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1356

1357
    @print_mapping_info
C
update  
channingss 已提交
1358
    def MaxPool(self, node):
C
channingss 已提交
1359
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1360
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1372

C
channingss 已提交
1373 1374
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1375
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1376
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1377 1378 1379 1380 1381
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1382

C
update  
channingss 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1392 1393
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1394

C
channings 已提交
1395
    def _global_pool(self, node):
C
channingss 已提交
1396
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1397
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1398
        fluid_op = 'pool2d'
C
channings 已提交
1399 1400 1401 1402 1403 1404
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1405
        attr = {
C
channings 已提交
1406
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1407 1408 1409
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1410 1411
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1412

1413
    @print_mapping_info
C
channings 已提交
1414 1415
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1416

1417
    @print_mapping_info
C
channings 已提交
1418 1419
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1420

1421
    @print_mapping_info
C
update  
channingss 已提交
1422
    def Conv(self, node):
C
channingss 已提交
1423 1424
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1425 1426 1427 1428 1429 1430
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1431
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1432 1433 1434
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1435
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1436 1437
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1438
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1439 1440 1441
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1442 1443 1444
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1445

C
channingss 已提交
1446
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1447 1448
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1449
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1450 1451 1452 1453 1454
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1470 1471
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1472

1473
    @print_mapping_info
C
channingss 已提交
1474
    def ConvTranspose(self, node):
C
channingss 已提交
1475 1476
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1477
        val_b = None
R
root 已提交
1478
        if len(node.layer.input) > 2:
C
channingss 已提交
1479 1480
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1481 1482 1483 1484 1485 1486
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1487
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1488 1489 1490
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1491
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1492 1493
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1494 1495 1496 1497 1498
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1499 1500 1501 1502

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1503

1504 1505
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1506
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1507 1508
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1519
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1520 1521
            'name': string(node.layer_name),
        }
1522 1523
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)