提交 bd84c83f 编写于 作者: C Channingss

[onnx]support paddle1.8, remove onnxruntime

上级 164d8ce5
- repo: local
- repo: https://github.com/PaddlePaddle/mirrors-yapf.git
sha: 0d79c0c469bab64f7229c9aca2b1186ef47f0e37
hooks:
- id: yapf
name: yapf
entry: yapf
language: system
args: [-i, --style .style.yapf]
files: \.py$
- repo: https://github.com/pre-commit/pre-commit-hooks
sha: a11d9314b22d8f8c7556443875b731ef05965464
hooks:
......@@ -18,6 +14,7 @@
- id: check-symlinks
- id: check-added-large-files
- repo: local
hooks:
- id: copyright_checker
name: copyright_checker
......
language: python
python:
- '2.7'
- '3.5'
- '3.6'
script:
- if [[ $TRAVIS_PYTHON_VERSION != 2.7 ]]; then /bin/bash ./tools/check_code_style.sh; fi
......
......@@ -11,3 +11,6 @@ x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization -
```
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。 指定`--without_data_format_optimization`后,会停止对`axis`,`shape`等参数的优化(这可能会带来一定数量的transpose操作)
**Q3. ONNX模型转换过程中,提示『Unknown shape for input tensor[tensor name: "input"] -> shape: ['batch', 'sequence'], Please define shape of input here』**
A:该提示信息表示从ONNX的模型中获取到输入tensor(tensor名为"input:)的shape是语义象征性的['batch', 'sequence'],而不是dim为int类型的shape,从而可能会因为部分node的shape无法推理,导致转换失败。所以用户可以尝试手动在提示后输入详细的shape信息,如:-1,3,224,224 其中-1表示Batch
......@@ -10,12 +10,12 @@ X2Paddle在多个主流的CV模型上,测试过TensorFlow/Caffe/ONNX模型的
## 环境依赖
python == 2.7 | python >= 3.5
paddlepaddle >= 1.6.0
paddlepaddle >= 1.8.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe : 无
onnx : onnx == 1.6.0 onnxruntime == 1.0.0
onnx : onnx == 1.6.0
## 安装
### 安装方式一(推荐)
......@@ -44,10 +44,15 @@ x2paddle --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel
```
x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
```
### Paddle2ONNX
```
# 注意:paddle_infer_model_dir下需包含__model__和__params__两个文件
x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_model
```
### 参数选项
| 参数 | |
|----------|--------------|
|--framework | 源模型类型 (tensorflow、caffe、onnx) |
|--framework | 源模型类型 (tensorflow、caffe、onnx、paddle2onnx) |
|--prototxt | 当framework为caffe时,该参数指定caffe模型的proto文件路径 |
|--weight | 当framework为caffe时,该参数指定caffe模型的参数文件路径 |
|--save_dir | 指定转换后的模型保存目录路径 |
......@@ -58,6 +63,7 @@ x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
|--params_merge | **[可选]** 当指定该参数时,转换完成后,inference_model中的所有模型参数将合并保存为一个文件__params__ |
## 使用转换后的模型
转换后的模型包括`model_with_code``inference_model`两个目录。
`model_with_code`中保存了模型参数,和转换后的python模型代码
......
......@@ -11,8 +11,7 @@ setuptools.setup(
version=x2paddle.__version__,
author="dltp-sz",
author_email="dltp-sz@baidu.com",
description=
"a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks.",
description="a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks.",
long_description=long_description,
long_description_content_type="text/plain",
url="https://github.com/PaddlePaddle/x2paddle",
......@@ -23,6 +22,4 @@ setuptools.setup(
"Operating System :: OS Independent",
],
license='Apache 2.0',
entry_points={'console_scripts': [
'x2paddle=x2paddle.convert:main',
]})
entry_points={'console_scripts': ['x2paddle=x2paddle.convert:main', ]})
......@@ -5,12 +5,14 @@ model_dir = sys.argv[1]
new_model_dir = sys.argv[2]
exe = fluid.Executor(fluid.CPUPlace())
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(dirname=model_dir, executor=exe)
fetch_targets] = fluid.io.load_inference_model(
dirname=model_dir, executor=exe)
print(feed_target_names)
fluid.io.save_inference_model(dirname=new_model_dir,
feeded_var_names=feed_target_names,
target_vars=fetch_targets,
executor=exe,
main_program=inference_program,
params_filename="__params__")
fluid.io.save_inference_model(
dirname=new_model_dir,
feeded_var_names=feed_target_names,
target_vars=fetch_targets,
executor=exe,
main_program=inference_program,
params_filename="__params__")
__version__ = "0.7.1"
__version__ = "0.7.4"
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
......@@ -19,32 +19,37 @@ import sys
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--model",
"-m",
type=_text_type,
default=None,
help="define model file path for tensorflow or onnx")
parser.add_argument("--prototxt",
"-p",
type=_text_type,
default=None,
help="prototxt file of caffe model")
parser.add_argument("--weight",
"-w",
type=_text_type,
default=None,
help="weight file of caffe model")
parser.add_argument("--save_dir",
"-s",
type=_text_type,
default=None,
help="path to save translated model")
parser.add_argument(
"--model",
"-m",
type=_text_type,
default=None,
help="define model file path for tensorflow or onnx")
parser.add_argument(
"--prototxt",
"-p",
type=_text_type,
default=None,
help="prototxt file of caffe model")
parser.add_argument(
"--weight",
"-w",
type=_text_type,
default=None,
help="weight file of caffe model")
parser.add_argument(
"--save_dir",
"-s",
type=_text_type,
default=None,
help="path to save translated model")
parser.add_argument(
"--framework",
"-f",
type=_text_type,
default=None,
help="define which deeplearning framework(tensorflow/caffe/onnx)")
help="define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)"
)
parser.add_argument(
"--caffe_proto",
"-c",
......@@ -52,27 +57,30 @@ def arg_parser():
default=None,
help="optional: the .py file compiled by caffe proto file of caffe model"
)
parser.add_argument("--version",
"-v",
action="store_true",
default=False,
help="get version of x2paddle")
parser.add_argument(
"--version",
"-v",
action="store_true",
default=False,
help="get version of x2paddle")
parser.add_argument(
"--without_data_format_optimization",
"-wo",
action="store_true",
default=False,
help="tf model conversion without data format optimization")
parser.add_argument("--define_input_shape",
"-d",
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument("--params_merge",
"-pm",
action="store_true",
default=False,
help="define whether merge the params")
parser.add_argument(
"--define_input_shape",
"-d",
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument(
"--params_merge",
"-pm",
action="store_true",
default=False,
help="define whether merge the params")
return parser
......@@ -117,7 +125,6 @@ def tf2paddle(model_path,
optimizer.merge_bias()
optimizer.optimize_sub_graph()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else:
......@@ -165,16 +172,35 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
return
print("Now translating model from onnx to paddle.")
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
from x2paddle.op_mapper.onnx.onnx_helper import ONNXOpMapperFactory
from x2paddle.decoder.onnx_decoder import ONNXDecoder
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
import onnxruntime
model = ONNXDecoder(model_path)
mapper = ONNXOpMapper(model, save_dir)
factory = ONNXOpMapperFactory()
mapper = factory.create_onnx_op_mapper(model)
print("Model optimizing ...")
optimizer = ONNXOptimizer(mapper)
print("Model optimized.")
optimizer.delete_redundance_code()
print("Paddle model and code generating ...")
mapper.save_inference_model(save_dir, params_merge)
print("Paddle model and code generated.")
def paddle2onnx(model_path, save_dir):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir)
def paddle2onnx(model_path, save_dir):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir)
def main():
......@@ -196,22 +222,13 @@ def main():
assert args.framework is not None, "--framework is not defined(support tensorflow/caffe/onnx)"
assert args.save_dir is not None, "--save_dir is not defined"
if args.framework == "onnx":
try:
import onnxruntime as rt
version = rt.__version__
if version != '1.0.0':
print("[ERROR] onnxruntime==1.0.0 is required")
return
except:
print(
"[ERROR] onnxruntime is not installed, use \"pip install onnxruntime==1.0.0\"."
)
try:
import paddle
v0, v1, v2 = paddle.__version__.split('.')
if int(v0) != 1 or int(v1) < 6:
print("paddle.__version__ = {}".format(paddle.__version__))
if v0 == '0' and v1 == '0' and v2 == '0':
print("[WARNING] You are use develop version of paddlepaddle")
elif int(v0) != 1 or int(v1) < 6:
print("[ERROR] paddlepaddle>=1.6.0 is required")
return
except:
......@@ -243,11 +260,18 @@ def main():
elif args.framework == "onnx":
assert args.model is not None, "--model should be defined while translating onnx model"
params_merge = False
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
paddle2onnx(args.model, args.save_dir)
else:
raise Exception("--framework only support tensorflow/caffe/onnx now")
raise Exception(
"--framework only support tensorflow/caffe/onnx/paddle2onnx now")
if __name__ == "__main__":
......
......@@ -46,8 +46,9 @@ class Layer(object):
for input in self.inputs:
if isinstance(input, GraphNode):
if hasattr(input, "index"):
in_list += (input.layer_name +
"[{}]".format(input.index) + ", ")
in_list += (
input.layer_name + "[{}]".format(input.index) + ", "
)
else:
in_list += (input.layer_name + ", ")
elif isinstance(input, six.string_types):
......@@ -71,8 +72,8 @@ class Layer(object):
layer_code = layer_code + key + "={}, ".format(input)
elif isinstance(self.inputs, GraphNode):
if hasattr(self.inputs, "index"):
layer_code += (self.inputs.layer_name +
"[{}]".format(self.inputs.index))
layer_code += (
self.inputs.layer_name + "[{}]".format(self.inputs.index))
else:
layer_code += (self.inputs.layer_name)
if self.op != "=":
......@@ -88,6 +89,8 @@ class Layer(object):
for key, value in param_attr.items():
if '\n' in str(value):
value = string(str(value).replace('\n', ','))
if str(key) == 'attr':
value = 'ParamAttr(' + str(value) + ')'
layer_code = layer_code + key + "={}, ".format(value)
layer_code = layer_code.strip(", ")
......
......@@ -29,11 +29,14 @@ def export_paddle_param(param, param_name, dir):
"bool": [framework_pb2.VarType.BOOL, None]
}
shape = param.shape
if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
param = param.astype('int64')
if len(shape) == 0:
assert param.size == 1, "Unexpected situation happend!"
shape = [1]
assert str(param.dtype) in dtype_map, "Unknown dtype of params."
assert str(
param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
str(param.dtype), param_name)
fp = open(os.path.join(dir, param_name), 'wb')
numpy.array([0], dtype='int32').tofile(fp)
numpy.array([0], dtype='int64').tofile(fp)
......@@ -64,10 +67,8 @@ def run_net(param_dir="./"):
b = os.path.exists(os.path.join(param_dir, var.name))
return b
fluid.io.load_vars(exe,
param_dir,
fluid.default_main_program(),
predicate=if_exist)
fluid.io.load_vars(
exe, param_dir, fluid.default_main_program(), predicate=if_exist)
class OpMapper(object):
......@@ -98,8 +99,8 @@ class OpMapper(object):
def add_codes(self, codes, indent=0):
if isinstance(codes, list):
for code in codes:
self.paddle_codes += (self.tab * indent + code.strip('\n') +
'\n')
self.paddle_codes += (
self.tab * indent + code.strip('\n') + '\n')
elif isinstance(codes, str):
self.paddle_codes += (self.tab * indent + codes.strip('\n') + '\n')
else:
......@@ -135,24 +136,25 @@ class OpMapper(object):
os.path.join(os.path.join(py_code_dir, var.name)))
return b
fluid.io.load_vars(exe,
py_code_dir,
fluid.default_main_program(),
predicate=if_exist)
fluid.io.load_vars(
exe,
py_code_dir,
fluid.default_main_program(),
predicate=if_exist)
if params_merge:
fluid.io.save_inference_model(dirname=os.path.join(
save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename="__params__")
fluid.io.save_inference_model(
dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename="__params__")
else:
fluid.io.save_inference_model(dirname=os.path.join(
save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename=None)
fluid.io.save_inference_model(
dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename=None)
except:
raise Exception(
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
......
......@@ -49,13 +49,11 @@ class CaffeResolver(object):
class CaffeGraphNode(GraphNode):
def __init__(self, layer, type_str, layer_name=None):
if layer_name is None:
super(CaffeGraphNode,
self).__init__(layer,
layer.name.replace('/', '_').replace('-', '_'))
super(CaffeGraphNode, self).__init__(
layer, layer.name.replace('/', '_').replace('-', '_'))
else:
super(CaffeGraphNode,
self).__init__(layer,
layer_name.replace('/', '_').replace('-', '_'))
super(CaffeGraphNode, self).__init__(
layer, layer_name.replace('/', '_').replace('-', '_'))
self.layer_type = type_str
self.fluid_code = FluidCode()
self.data = None
......@@ -171,6 +169,14 @@ class CaffeGraph(Graph):
self.input2layers(input_layers)
self.transform_input_layers(layers, input_layers)
layers = input_layers + layers
for layer in layers:
if hasattr(layer, 'name'):
name = getattr(layer, 'name')
setattr(layer, 'name', name.replace('/', '_').replace('-', '_'))
for i, name in enumerate(layer.bottom):
layer.bottom[i] = name.replace('/', '_').replace('-', '_')
for i, name in enumerate(layer.top):
layer.top[i] = name.replace('/', '_').replace('-', '_')
top_layer = {}
for layer in layers:
......@@ -232,10 +238,12 @@ class CaffeDecoder(object):
def load_using_pb(self):
data = self.resolver.NetParameter()
data.MergeFromString(open(self.model_path, 'rb').read())
pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
layers = data.layers or data.layer
for layer in layers:
setattr(layer, 'name',
layer.name.replace('/', '_').replace('-', '_'))
pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
self.params = [pair(layer) for layer in layers if layer.blobs]
def normalize_pb_data(self, layer):
......@@ -246,21 +254,20 @@ class CaffeDecoder(object):
if layer.type == 'PReLU':
c_o, c_i, h, w = map(int, [1] + \
list(dims) + [1]* (3 - len(dims)))
elif layer.type == 'Normalize':
elif layer.type == 'Normalize' and len(dims) == 4:
data = np.asarray(list(blob.data), dtype=np.float32)
transformed.append(data)
continue
else:
c_o, c_i, h, w = map(int, [1] * (4 - len(dims)) \
+ list(dims))
c_o, c_i, h, w = map(int,
[1] * (4 - len(dims)) + list(dims))
else:
c_o = blob.num
c_i = blob.channels
h = blob.height
w = blob.width
data = np.asarray(list(blob.data),
dtype=np.float32).reshape(c_o, c_i, h, w)
data = np.asarray(
list(blob.data), dtype=np.float32).reshape(c_o, c_i, h, w)
transformed.append(data)
return transformed
此差异已折叠。
......@@ -14,6 +14,7 @@
from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_shape_inference import SymbolicShapeInference
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
......@@ -53,7 +54,7 @@ class ONNXGraphNode(GraphNode):
convert ONNX node attributes to dict
"""
return {
attr.name: self.get_attribute_value2(attr)
attr.name: self.get_attribute_value(attr)
for attr in self.layer.attribute
}
......@@ -64,16 +65,15 @@ class ONNXGraphNode(GraphNode):
return None
return self.attr_map['value']
def get_attribute_value2(self, attr):
def get_attribute_value(self, attr):
"""
get_attribute_value enhanced
"""
if attr.type == onnx.AttributeProto.TENSOR:
dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
data = attr.t.raw_data
value = np.frombuffer(data,
dtype=dtype,
count=(len(data) // dtype.itemsize))
value = np.frombuffer(
data, dtype=dtype, count=(len(data) // dtype.itemsize))
elif attr.type == onnx.AttributeProto.STRING:
value = attr.s
value = value.decode() if isinstance(value, bytes) else value
......@@ -131,43 +131,90 @@ class ONNXGraphDataNode(GraphNode):
class ONNXGraph(Graph):
def __init__(self, onnx_model):
super(ONNXGraph, self).__init__(onnx_model.graph)
self.onnx_model = onnx_model
super(ONNXGraph, self).__init__(onnx_model)
self.fixed_input_shape = {}
self.initializer = {}
self.place_holder_nodes = list()
self.value_infos = {}
self.graph = onnx_model.graph
self.get_place_holder_nodes()
self.value_infos = self.inferred_model_value_info(self.model)
self.results_of_inference = dict()
print("shape inferencing ...")
self.graph = SymbolicShapeInference.infer_shapes(
onnx_model, fixed_input_shape=self.fixed_input_shape)
print("shape inferenced.")
self.build()
self.collect_value_infos()
self.allocate_shapes()
def get_inner_nodes(self):
"""
generate inner node of ONNX model
"""
inner_nodes = []
if not isinstance(self.model, onnx.GraphProto):
if not isinstance(self.graph, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in self.model.initializer:
for initializer in self.graph.initializer:
name = initializer.name
inner_nodes.append(name)
return inner_nodes
def get_symbolic_shape(self, dims):
shape = []
for dim in dims:
if dim.HasField('dim_param'):
shape.append(dim.dim_param)
else:
shape.append(dim.dim_value)
return shape
def check_input_shape(self, vi):
if vi.type.HasField('tensor_type'):
for dim in vi.type.tensor_type.shape.dim:
if dim.HasField(
'dim_param') and vi.name not in self.fixed_input_shape:
shape = self.get_symbolic_shape(
vi.type.tensor_type.shape.dim)
print(
"Unknown shape for input tensor[tensor name: '{}'] -> shape: {}, Please define shape of input here,\nNote:you can use visualization tools like Netron to check input shape."
.format(vi.name, shape))
right_shape_been_input = False
while not right_shape_been_input:
try:
shape = raw_input(
"Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
)
except:
shape = input(
"Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
)
if shape.count("-1") > 1:
print("Only 1 dimension can be -1, type again:)")
else:
right_shape_been_input = True
if shape == 'N':
break
shape = [int(dim) for dim in shape.strip().split(',')]
assert shape.count(-1) <= 1, "Only one dimension can be -1"
self.fixed_input_shape[vi.name] = shape
break
def get_place_holder_nodes(self):
"""
generate place_holder node of ONNX model
"""
inner_nodes = self.get_inner_nodes()
input_nodes = [value.name for value in self.model.input]
for ipt_data in input_nodes:
if ipt_data not in inner_nodes:
self.place_holder_nodes.append(ipt_data)
for ipt_vi in self.graph.input:
if ipt_vi.name not in inner_nodes:
self.check_input_shape(ipt_vi)
self.place_holder_nodes.append(ipt_vi.name)
def get_output_nodes(self):
"""
generate output_nodes node of ONNX model
"""
inner_nodes = self.get_inner_nodes()
output_nodes = [value.name for value in self.model.output]
output_nodes = [value.name for value in self.graph.output]
for opt_data in output_nodes:
if opt_data not in inner_nodes:
self.output_nodes.append(opt_data)
......@@ -184,11 +231,11 @@ class ONNXGraph(Graph):
"""
build topo_sort of ONNX model
"""
for layer in self.model.node:
for layer in self.graph.node:
node = ONNXGraphNode(layer)
self.node_map[layer.name] = node
for layer in self.model.input:
for layer in self.graph.input:
if layer.name not in self.node_map:
is_place_holder = self.is_place_holder_nodes(layer.name)
self.node_map[layer.name] = ONNXGraphDataNode(
......@@ -197,7 +244,7 @@ class ONNXGraph(Graph):
is_global_input=is_place_holder)
#set data node's weight
for initializer in self.model.initializer:
for initializer in self.graph.initializer:
name = initializer.name
weight = to_array(initializer)
if name in self.node_map:
......@@ -205,9 +252,8 @@ class ONNXGraph(Graph):
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
else:
self.node_map[name] = ONNXGraphDataNode(initializer,
layer_name=name,
is_global_input=False)
self.node_map[name] = ONNXGraphDataNode(
initializer, layer_name=name, is_global_input=False)
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
......@@ -230,7 +276,7 @@ class ONNXGraph(Graph):
continue
if in_node not in self.node_map:
flag = 0
for nd in self.model.node:
for nd in self.graph.node:
for idx, opt in enumerate(nd.output):
if opt == in_node:
self.connect(nd.name, layer_name)
......@@ -258,81 +304,86 @@ class ONNXGraph(Graph):
ipt_node.index = node.which_child[ipt_node.layer_name]
return ipt_node
def graph_weights(self, graph):
def graph_weights(self):
"""
generator for weights
"""
if not isinstance(graph, onnx.GraphProto):
if not isinstance(self.graph, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in graph.initializer:
for initializer in self.graph.initializer:
name = initializer.name
weight = to_array(initializer)
yield name, weight
def inferred_model_value_info(self, graph):
def collect_value_infos(self):
"""
collect value/type info for an ONNX model
"""
assert isinstance(graph,
assert isinstance(self.graph,
onnx.GraphProto), 'model is not a ModelProto instance'
value_info = Dict()
for item in graph.value_info:
value_info[item.name] = {
for item in self.graph.value_info:
self.value_infos[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': False
}
for item in graph.input:
assert item.name not in value_info
value_info[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': True
}
for item in graph.output:
assert item.name not in value_info
value_info[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': True
}
return value_info
# for item in self.graph.input:
# self.value_infos[item.name] = {
# 'dtype':
# TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
# 'shape':
# [dim.dim_value for dim in item.type.tensor_type.shape.dim],
# 'external': True
# }
# for item in self.graph.output:
# #assert item.name not in value_info
# self.value_infos[item.name] = {
# 'dtype':
# TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
# 'shape':
# [dim.dim_value for dim in item.type.tensor_type.shape.dim],
# 'external': True
# }
def allocate_shapes(self):
"""
run shape inference
"""
for layer in self.graph.node:
node = self.node_map[layer.name]
for opt in layer.output:
if opt in self.value_infos:
value_info = self.value_infos[opt]
#if len(value_info['shape']) == 0 or value_info[
# 'dtype'] is None or 0 in value_info['shape']:
# #TODO add node shape inference
node.dtype = value_info['dtype']
node.out_shapes.append(value_info['shape'])
else:
node.out_shapes.append([])
class ONNXDecoder(object):
def __init__(self, onnx_model):
model = onnx.load(onnx_model)
onnx_model = onnx.load(onnx_model)
print('model ir_version: {}, op version: {}'.format(
model.ir_version, model.opset_import[0].version))
if model.opset_import[0].version < 9:
_logger.warning(
'Now, onnx2paddle support convert onnx model opset_verison == 9,'
'opset_verison of your onnx model is %d < 9,'
'some operator maybe unsuccessful in convertion.',
model.opset_import[0].version)
check_model(model)
self.check_model_running_state(onnx_model)
model = onnx.shape_inference.infer_shapes(model)
model = self.optimize_model_skip_op_for_inference(model)
model = self.optimize_model_strip_initializer(model)
self.standardize_variable_name(model.graph)
self.model = model
graph = model.graph
self.onnx_graph = ONNXGraph(model)
self.onnx_graph.build()
onnx_model.ir_version, onnx_model.opset_import[0].version))
self.op_set = onnx_model.opset_import[0].version
check_model(onnx_model)
onnx_model = self.optimize_model_skip_op(onnx_model)
onnx_model = self.optimize_model_strip_initializer(onnx_model)
onnx_model = self.optimize_node_name(onnx_model)
self.graph = ONNXGraph(onnx_model)
#self.onnx_model = onnx_model
def build_value_refs(self, nodes):
"""
......@@ -375,14 +426,13 @@ class ONNXDecoder(object):
processed += 1
return processed
def optimize_model_skip_op_for_inference(self, model, op_list=None):
def optimize_model_skip_op(self, model, op_list=None):
"""
skip ops can be bypassed for inference
"""
nodes = model.graph.node
if op_list is None:
op_list = ['Dropout']
nodes = model.graph.node
input_refs, output_refs = self.build_value_refs(nodes)
ret = type(model)()
ret.CopyFrom(model)
......@@ -475,38 +525,11 @@ class ONNXDecoder(object):
name = name.replace(s, '_')
return 'x2paddle_' + name
def check_model_running_state(self, model_path):
import onnxruntime as rt
model = onnx.load(model_path)
model = onnx.shape_inference.infer_shapes(model)
if len(model.graph.value_info) < len(model.graph.node) - 1:
_logger.warning(
'During conversion of your model, some operators will be assignd node.out_shape==None, '
'refer to https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md'
)
try:
datatype_map = {
'tensor(int64)': 'int',
'tensor(float)': 'float32',
'tensor(int32)': 'int32'
}
input_dict = {}
sess = rt.InferenceSession(model_path)
for ipt in sess.get_inputs():
datatype = datatype_map[ipt.type]
input_dict[ipt.name] = np.random.random(
ipt.shape).astype(datatype)
res = sess.run(None, input_feed=input_dict)
except:
raise Exception(
"onnxruntime inference onnx model failed, Please confirm the correctness of onnx model by onnxruntime, if onnx model is correct, please submit issue in github."
)
def standardize_variable_name(self, graph):
def optimize_node_name(self, model):
"""
standardize variable name for paddle's code
"""
graph = model.graph
for initializer in graph.initializer:
initializer.name = self.make_variable_name(initializer.name)
for ipt in graph.input:
......@@ -525,3 +548,4 @@ class ONNXDecoder(object):
node.input[i] = self.make_variable_name(node.input[i])
for i in range(len(node.output)):
node.output[i] = self.make_variable_name(node.output[i])
return model
此差异已折叠。
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
class PaddleDecoder(object):
def __init__(self,
model_dir,
model_filename='__model__',
params_filename=None):
exe = fluid.Executor(fluid.CPUPlace())
[self.program, feed, fetchs] = fluid.io.load_inference_model(
model_dir,
exe,
model_filename=model_filename,
params_filename=params_filename)
......@@ -48,7 +48,10 @@ class TFGraphNode(GraphNode):
@property
def out_shapes(self):
values = self.layer.attr["_output_shapes"].list.shape
if self.layer_type == "OneShotIterator":
values = self.layer.attr["output_shapes"].list.shape
else:
values = self.layer.attr["_output_shapes"].list.shape
out_shapes = list()
for value in values:
shape = [dim.size for dim in value.dim]
......@@ -62,6 +65,8 @@ class TFGraphNode(GraphNode):
dtype = self.layer.attr[k].type
if dtype > 0:
break
if dtype == 0:
dtype = self.layer.attr['output_types'].list.type[0]
if dtype not in self.dtype_map:
raise Exception("Dtype[{}] not in dtype_map".format(dtype))
return self.dtype_map[dtype]
......@@ -115,13 +120,13 @@ class TFGraph(Graph):
def build(self):
for layer in self.model.node:
self.node_map[layer.name.replace('/', '_').replace(
'-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
'-', '_')] = TFGraphNode(
layer, data_format=self.tf_data_format)
for layer_name, node in self.node_map.items():
for in_node in node.layer.input:
in_node = in_node.replace('/',
'_').replace('-',
'_').replace('^', '')
in_node = in_node.replace('/', '_').replace('-', '_').replace(
'^', '')
if in_node not in self.node_map:
if in_node.strip().split(':')[0] in self.node_map:
self.connect(in_node.strip().split(':')[0], layer_name)
......@@ -226,7 +231,7 @@ class TFGraph(Graph):
def _remove_identity_node(self):
identity_ops = [
'Identity', 'StopGradient', 'Switch', 'Merge',
'PlaceholderWithDefault'
'PlaceholderWithDefault', 'IteratorGetNext'
]
identity_node = list()
for node_name, node in self.node_map.items():
......@@ -317,7 +322,7 @@ class TFDecoder(object):
graph_def = cp.deepcopy(graph_def)
input_map = dict()
for layer in graph_def.node:
if layer.op != "Placeholder":
if layer.op != "Placeholder" and layer.op != "OneShotIterator":
continue
graph_node = TFGraphNode(layer)
dtype = graph_node.layer.attr['dtype'].type
......@@ -335,6 +340,14 @@ class TFDecoder(object):
if shape.count(-1) > 1:
need_define_shape = 2
if need_define_shape == 1:
try:
shape = graph_node.out_shapes[0]
if len(shape) > 0 and shape.count(-1) < 2:
need_define_shape = 0
except:
pass
if need_define_shape > 0:
shape = None
if graph_node.get_attr("shape"):
......@@ -377,10 +390,10 @@ class TFDecoder(object):
shape=shape,
name="x2paddle_{}".format(layer.name))
except:
x2paddle_input = tf.placeholder(dtype=dtype,
shape=shape,
name="x2paddle_{}".format(
layer.name))
x2paddle_input = tf.placeholder(
dtype=dtype,
shape=shape,
name="x2paddle_{}".format(layer.name))
input_map["{}:0".format(layer.name)] = x2paddle_input
if shape.count(None) > 0:
......
......@@ -122,16 +122,17 @@ def convolutiondepthwise_layer(inputs,
c_out = num_output if num_output is not None else input_shape[0][1]
group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in /
(c_out / c_in))
out = fluid.layers.conv2d(input,
dilation=[dila_h, dila_w],
filter_size=[k_h, k_w],
stride=[s_h, s_w],
padding=[p_h, p_w],
groups=group,
num_filters=c_out,
param_attr=name + '_weights',
bias_attr=name + '_bias',
name=name)
out = fluid.layers.conv2d(
input,
dilation=[dila_h, dila_w],
filter_size=[k_h, k_w],
stride=[s_h, s_w],
padding=[p_h, p_w],
groups=group,
num_filters=c_out,
param_attr=name + '_weights',
bias_attr=name + '_bias',
name=name)
return out
......@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
return weights_name
register(kind='ConvolutionDepthwise',
shape=convolutiondepthwise_shape,
layer=convolutiondepthwise_layer,
weights=convolutiondepthwise_weights)
register(
kind='ConvolutionDepthwise',
shape=convolutiondepthwise_shape,
layer=convolutiondepthwise_layer,
weights=convolutiondepthwise_weights)
......@@ -12,7 +12,6 @@ def detectionoutput_layer(inputs,
share_location=True,
keep_top_k=100,
confidence_threshold=0.1,
num_classes=2,
input_shape=None,
name=None):
nms_param_str = nms_param
......@@ -37,9 +36,9 @@ def detectionoutput_layer(inputs,
pb = fluid.layers.reshape(x=pb, shape=[-1, 4])
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[0, -1, 4])
mbox_conf_flatten = fluid.layers.reshape(x=mbox_conf_flatten,
shape=[0, -1, num_classes])
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = fluid.layers.reshape(
x=mbox_conf_flatten, shape=[0, pb.shape[0], -1])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
fields = ['eta', 'top_k', 'nms_threshold']
......@@ -65,7 +64,8 @@ def detectionoutput_weights(name, data=None):
return weights_name
register(kind='DetectionOutput',
shape=detectionoutput_shape,
layer=detectionoutput_layer,
weights=detectionoutput_weights)
register(
kind='DetectionOutput',
shape=detectionoutput_shape,
layer=detectionoutput_layer,
weights=detectionoutput_weights)
......@@ -20,9 +20,8 @@ def normalize_layer(inputs,
attr=name + '_scale')
scale_param = fluid.layers.reshape(x=scale_param, \
shape=[1] if channel_shared else [input_shape[0][1]])
out = fluid.layers.elementwise_mul(x=l2_norm,
y=scale_param,
axis=-1 if channel_shared else 1)
out = fluid.layers.elementwise_mul(
x=l2_norm, y=scale_param, axis=-1 if channel_shared else 1)
return out
......@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
return weights_name
register(kind='Normalize',
shape=normalize_shape,
layer=normalize_layer,
weights=normalize_weights)
register(
kind='Normalize',
shape=normalize_shape,
layer=normalize_layer,
weights=normalize_weights)
......@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
return weights_name
register(kind='Permute',
shape=permute_shape,
layer=permute_layer,
weights=permute_weights)
register(
kind='Permute',
shape=permute_shape,
layer=permute_layer,
weights=permute_weights)
......@@ -30,18 +30,19 @@ def priorbox_layer(inputs,
steps = tuple(step) if type(step) is list or type(step) is tuple else (step,
step)
box, variance_ = fluid.layers.prior_box(input,
image,
min_sizes=min_size,
max_sizes=max_size,
aspect_ratios=aspect_ratio,
variance=variance,
flip=flip,
clip=clip,
steps=steps,
offset=offset,
name=name,
min_max_aspect_ratios_order=True)
box, variance_ = fluid.layers.prior_box(
input,
image,
min_sizes=min_size,
max_sizes=max_size,
aspect_ratios=aspect_ratio,
variance=variance,
flip=flip,
clip=clip,
steps=steps,
offset=offset,
name=name,
min_max_aspect_ratios_order=True)
box = fluid.layers.reshape(box, [1, 1, -1])
variance_ = fluid.layers.reshape(variance_, [1, 1, -1])
out = fluid.layers.concat([box, variance_], axis=1)
......@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
return weights_name
register(kind='PriorBox',
shape=priorbox_shape,
layer=priorbox_layer,
weights=priorbox_weights)
register(
kind='PriorBox',
shape=priorbox_shape,
layer=priorbox_layer,
weights=priorbox_weights)
......@@ -23,8 +23,7 @@ def register(kind, shape, layer, weights):
kind = [kind]
else:
assert type(
kind
) is list, 'invalid param "kind" for register, not a list or str'
kind) is list, 'invalid param "kind" for register, not a list or str'
for k in kind:
assert type(
......
......@@ -21,11 +21,12 @@ def roipooling_layer(inputs,
input = inputs[0]
roi = inputs[1]
roi = fluid.layers.slice(roi, axes=[1], starts=[1], ends=[5])
out = fluid.layers.roi_pool(input,
roi,
pooled_height=pooled_h,
pooled_width=pooled_w,
spatial_scale=spatial_scale)
out = fluid.layers.roi_pool(
input,
roi,
pooled_height=pooled_h,
pooled_width=pooled_w,
spatial_scale=spatial_scale)
return out
......@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
return weights_name
register(kind='ROIPooling',
shape=roipooling_shape,
layer=roipooling_layer,
weights=roipooling_weights)
register(
kind='ROIPooling',
shape=roipooling_shape,
layer=roipooling_layer,
weights=roipooling_weights)
......@@ -30,11 +30,12 @@ def select_layer(inputs,
out = []
for i in range(len(slice_point)):
out.append(
fluid.layers.slice(input,
axes=[axis],
starts=[slice_point[i]],
ends=[slice_point[i + 1]],
name=name + '_' + str(i)))
fluid.layers.slice(
input,
axes=[axis],
starts=[slice_point[i]],
ends=[slice_point[i + 1]],
name=name + '_' + str(i)))
if i == len(slice_point) - 2:
break
return out
......@@ -45,7 +46,8 @@ def select_weights(name, data=None):
return weights_name
register(kind='Select',
shape=select_shape,
layer=select_layer,
weights=select_weights)
register(
kind='Select',
shape=select_shape,
layer=select_layer,
weights=select_weights)
......@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
return weights_name
register(kind='ShuffleChannel',
shape=shufflechannel_shape,
layer=shufflechannel_layer,
weights=shufflechannel_weights)
register(
kind='ShuffleChannel',
shape=shufflechannel_shape,
layer=shufflechannel_layer,
weights=shufflechannel_weights)
......@@ -33,8 +33,8 @@ def get_kernel_parameters(params):
[s_h, s_w] = [params.stride] * 2
elif len(params.stride) > 0:
s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
s_w = params.stride_w if params.stride_w > 0 else params.stride[
len(params.stride) - 1]
s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
params.stride) - 1]
elif params.stride_h > 0 or params.stride_w > 0:
s_h = params.stride_h
s_w = params.stride_w
......@@ -293,12 +293,15 @@ def shape_reshape(layer, input_shape):
explicit_count *= count(l)
for i in range(len(copy_axes)):
explicit_count *= outshape[start_axis + copy_axes[i]]
outshape[start_axis + inferred_axis] = -1
outshape[0] = 0
else:
outshape[0] = -1
assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
"must be divisible by product of the specified dimensions[%d] "\
% (input_count, explicit_count)
outshape[start_axis + inferred_axis] = int(input_count / explicit_count)
output_count = count(outshape)
assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
output_count, input_count)
outshape[0] = -1
return [outshape]
......@@ -342,10 +345,9 @@ def shape_flatten(layer, input_shape):
output_shape = inshape[0:start_axis]
if len(inshape[start_axis:end_axis]) != 0:
flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
flat_sz = -1
output_shape[0] = 0
output_shape += [flat_sz]
output_shape += inshape[end_axis:len(inshape)]
output_shape[0] = -1
return [output_shape]
......
......@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
epsilon = 1e-5
input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(fluid.layers.square(input_ - mean),
dim=[2, 3],
keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input_ - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = inputs[1]
offset_param = inputs[2]
scale = fluid.layers.create_parameter(name=scale_param.name,
shape=input_.shape[1:2],
dtype="float32")
offset = fluid.layers.create_parameter(name=offset_param.name,
shape=input_.shape[1:2],
dtype="float32")
scale = fluid.layers.create_parameter(
name=scale_param.name, shape=input_.shape[1:2], dtype="float32")
offset = fluid.layers.create_parameter(
name=offset_param.name, shape=input_.shape[1:2], dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
......@@ -51,8 +48,9 @@ def InstanceNormalization_weights(name, data=None):
return weights_name
register(kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
register(
kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
......@@ -36,8 +36,7 @@ def register(kind, shape, layer, child_func, weights):
kind = [kind]
else:
assert type(
kind
) is list, 'invalid param "kind" for register, not a list or str'
kind) is list, 'invalid param "kind" for register, not a list or str'
for k in kind:
assert type(
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.op_mapper.onnx.opset9 import ONNXOpMapperOpSet9
class ONNXOpMapperFactory:
def __init__(self):
self.support_op_sets = [9, ]
self.default_op_set = 9
def create_onnx_op_mapper(self, decoder):
run_op_set = self.default_op_set
OpMapper = ''
if decoder.op_set in self.support_op_sets:
OpMapper = 'ONNXOpMapperOpSet' + str(decoder.op_set)
elif decoder.op_set < self.default_op_set:
OpMapper = 'ONNXOpMapperOpSet' + str(self.default_op_set)
else:
for op_set in self.support_op_sets:
if decoder.op_set > op_set:
run_op_set = op_set
else:
break
OpMapper = 'ONNXOpMapperOpSet' + str(run_op_set)
print(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.format(self.support_op_sets, decoder.op_set, run_op_set))
return eval(OpMapper)(decoder)
......@@ -28,61 +28,55 @@ default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping = {
'Shape': ['shape', ['X'], ['Out']],
'Clip': [
'clip', ['X'], ['Out'],
dict(),
dict(
min=(_np.asarray([255, 255, 127, 255],
dtype=_np.uint8).view(_np.float32)[0]),
max=(_np.asarray([255, 255, 127, 127],
dtype=_np.uint8).view(_np.float32)[0]),
)
'clip', ['X'], ['Out'], dict(), dict(
min=(_np.asarray(
[255, 255, 127, 255], dtype=_np.uint8).view(_np.float32)[0]),
max=(_np.asarray(
[255, 255, 127, 127], dtype=_np.uint8).view(_np.float32)[0]), )
],
'Erf': ['erf', ['X'], ['Out']],
'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [
'reduce_mean', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
'reduce_mean', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceSum': [
'reduce_sum', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
'reduce_sum', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMin': [
'reduce_min', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
'reduce_min', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMax': [
'reduce_max', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
#active function
'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'],
dict(), dict(alpha=.01)],
'Elu': ['elu', ['X'], ['Out'],
dict(), dict(alpha=1.)],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
'ThresholdedRelu': [
'thresholded_relu', ['X'], ['Out'],
dict(alpha='threshold'),
'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
dict(alpha=1.)
],
'Tanh': ['tanh', ['X'], ['Out']],
'Sigmoid': ['sigmoid', ['X'], ['Out']],
'HardSigmoid': [
'hard_sigmoid', ['X'], ['Out'],
dict(alpha='slope', beta='offset'),
dict(slope=.2, offset=.5)
'hard_sigmoid', ['X'], ['Out'], dict(
alpha='slope', beta='offset'), dict(
slope=.2, offset=.5)
],
'Softsign': ['softsign', ['X'], ['Out']],
'Softplus': ['softplus', ['X'], ['Out']],
'Exp': ['exp', ['X'], ['Out']],
'Softmax': ['softmax', ['X'], ['Out'],
dict(), dict(axis=1)],
'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
'Sqrt': ['sqrt', ['X'], ['Out']],
'Floor': ['floor', ['X'], ['Out']],
'Abs': ['abs', ['X'], ['Out']],
}
default_ioa_constraint = {
'Gather':
[(lambda i, o, a: a.get('axis', 0) == 0, 'only axis = 0 is supported')],
'Gather': [(lambda i, o, a: a.get('axis', 0) == 0,
'only axis = 0 is supported')],
}
import onnx
import numpy as np
from onnx import onnx_pb, helper
im2seq_counter = 0
def im2sequence(op, block):
global im2sequence_counter
n, c, h, w = block.var(op.input('X')[0]).shape
assert h > 0 and w > 0, "Only supported fixed input shape for im2sequence operator."
stride_h, stride_w = op.attr('strides')
paddings = op.attr('paddings')
assert op.attr(
'out_stride'
) != 1, "Only out_stride==1 is supported for im2sequence operator."
h = h + paddings[0] + paddings[1]
w = w + paddings[1] + paddings[2]
kernel_h, kernel_w = op.attr('kernels')
out_h = 1 + (h - kernel_h + stride_h - 1) // stride_h
out_w = 1 + (w - kernel_w + stride_w - 1) // stride_w
h_steps = list()
for i in range(out_h):
h_steps.append([i * stride_h, i * stride_h + kernel_h])
w_steps = list()
for i in range(out_w):
w_steps.append([i * stride_w, i * stride_w + kernel_w])
nodes = list()
slice_blocks = list()
for i in range(out_h):
for j in range(out_w):
starts_name = "im2sequence.starts.{}.{}.{}".format(im2seq_counter,
i, j)
starts_tensor = helper.make_tensor(
name=starts_name,
data_type=onnx_pb.TensorProto.INT64,
dims=[4],
vals=[0, 0, h_steps[i][0], w_steps[j][0]])
ends_name = "im2sequence.ends.{}.{}.{}".format(im2seq_counter, i, j)
ends_tensor = helper.make_tensor(
name=ends_name,
data_type=onnx_pb.TensorProto.INT64,
dims=[4],
vals=[999999, 999999, h_steps[i][1], w_steps[j][1]])
starts_node = helper.make_node(
'Constant',
inputs=[],
outputs=[starts_name],
value=starts_tensor)
ends_node = helper.make_node(
'Constant', inputs=[], outputs=[ends_name], value=ends_tensor)
nodes.extend([starts_node, ends_node])
slice_block_name = "im2sequence.slice.{}.{}.{}".format(
im2seq_counter, i, j)
slice_block_node = helper.make_node(
'Slice',
inputs=[op.input('X')[0], starts_name, ends_name],
outputs=[slice_block_name])
flatten_block_name = "im2sequence.flatten.{}.{}.{}".format(
im2seq_counter, i, j)
flatten_block_node = helper.make_node(
"Flatten",
inputs=[slice_block_name],
outputs=[flatten_block_name],
axis=0)
nodes.extend([slice_block_node, flatten_block_node])
slice_blocks.append(flatten_block_name)
concat_block_name = "im2sequence.concat_block.{}".format(im2seq_counter)
# concat_block_node = helper.make_node("Concat", inputs=slice_blocks, outputs=[concat_block_name], axis=0)
concat_block_node = helper.make_node(
"Concat", inputs=slice_blocks, outputs=op.output('Out'), axis=0)
nodes.append(concat_block_node)
print("\n\n==========Importance Notice===========")
print(
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
)
print("======================================\n")
return nodes
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
result_name = outputs['Out'][0]
background = attrs['background_label']
normalized = attrs['normalized']
if normalized == False:
warnings.warn(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
Please set normalized=True in multiclass_nms of Paddle')
#convert the paddle attribute to onnx tensor
name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
name_iou_threshold = [outputs['Out'][0] + "@iou_threshold"]
name_keep_top_k = [outputs['Out'][0] + '@keep_top_k']
name_keep_top_k_2D = [outputs['Out'][0] + '@keep_top_k_1D']
node_score_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_score_threshold,
value=onnx.helper.make_tensor(
name=name_score_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['score_threshold'])]))
node_iou_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_iou_threshold,
value=onnx.helper.make_tensor(
name=name_iou_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['nms_threshold'])]))
node_keep_top_k = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k,
value=onnx.helper.make_tensor(
name=name_keep_top_k[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=(),
vals=[np.int64(attrs['keep_top_k'])]))
node_keep_top_k_2D = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k_2D,
value=onnx.helper.make_tensor(
name=name_keep_top_k_2D[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1, 1],
vals=[np.int64(attrs['keep_top_k'])]))
# the paddle data format is x1,y1,x2,y2
kwargs = {'center_point_box': 0}
name_select_nms = [outputs['Out'][0] + "@select_index"]
node_select_nms= onnx.helper.make_node(
'NonMaxSuppression',
inputs=inputs['BBoxes'] + inputs['Scores'] + name_keep_top_k +\
name_iou_threshold + name_score_threshold,
outputs=name_select_nms)
# step 1 nodes select the nms class
node_list = [
node_score_threshold, node_iou_threshold, node_keep_top_k,
node_keep_top_k_2D, node_select_nms
]
# create some const value to use
name_const_value = [result_name+"@const_0",
result_name+"@const_1",\
result_name+"@const_2",\
result_name+"@const_-1"]
value_const_value = [0, 1, 2, -1]
for name, value in zip(name_const_value, value_const_value):
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[name],
value=onnx.helper.make_tensor(
name=name + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1],
vals=[value]))
node_list.append(node)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_1"],
outputs=outputs_gather_1,
axis=1)
node_list.append(node_gather_1)
outputs_squeeze_gather_1 = [result_name + "@sequeeze_gather_1"]
node_squeeze_gather_1 = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_1,
outputs=outputs_squeeze_gather_1,
axes=[1])
node_list.append(node_squeeze_gather_1)
outputs_gather_2 = [result_name + "@gather_2"]
node_gather_2 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_2"],
outputs=outputs_gather_2,
axis=1)
node_list.append(node_gather_2)
#slice the class is not 0
if background == 0:
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_squeeze_gather_1, outputs=outputs_nonzero)
node_list.append(node_nonzero)
else:
name_thresh = [result_name + "@thresh"]
node_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_thresh,
value=onnx.helper.make_tensor(
name=name_thresh[0] + "@const",
data_type=onnx.TensorProto.INT32,
dims=[1],
vals=[-1]))
node_list.append(node_thresh)
outputs_cast = [result_name + "@cast"]
node_cast = onnx.helper.make_node(
'Cast', inputs=outputs_squeeze_gather_1, outputs=outputs_cast, to=6)
node_list.append(node_cast)
outputs_greater = [result_name + "@greater"]
node_greater = onnx.helper.make_node(
'Greater',
inputs=outputs_cast + name_thresh,
outputs=outputs_greater)
node_list.append(node_greater)
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_greater, outputs=outputs_nonzero)
node_list.append(node_nonzero)
outputs_gather_1_nonzero = [result_name + "@gather_1_nonzero"]
node_gather_1_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1 + outputs_nonzero,
outputs=outputs_gather_1_nonzero,
axis=0)
node_list.append(node_gather_1_nonzero)
outputs_gather_2_nonzero = [result_name + "@gather_2_nonzero"]
node_gather_2_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2 + outputs_nonzero,
outputs=outputs_gather_2_nonzero,
axis=0)
node_list.append(node_gather_2_nonzero)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1 = [result_name + "@reshape_scores_rank1"]
node_reshape_scores_rank1 = onnx.helper.make_node(
"Reshape",
inputs=inputs['Scores'] + [result_name + "@const_-1"],
outputs=outputs_reshape_scores_rank1)
node_list.append(node_reshape_scores_rank1)
# get the shape of scores
outputs_shape_scores = [result_name + "@shape_scores"]
node_shape_scores = onnx.helper.make_node(
'Shape', inputs=inputs['Scores'], outputs=outputs_shape_scores)
node_list.append(node_shape_scores)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1 = [result_name + "@gather_scores_dim1"]
node_gather_scores_dim1 = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_scores + [result_name + "@const_2"],
outputs=outputs_gather_scores_dim1,
axis=0)
node_list.append(node_gather_scores_dim1)
# mul class * M
outputs_mul_classnum_boxnum = [result_name + "@mul_classnum_boxnum"]
node_mul_classnum_boxnum = onnx.helper.make_node(
'Mul',
inputs=outputs_gather_1_nonzero + outputs_gather_scores_dim1,
outputs=outputs_mul_classnum_boxnum)
node_list.append(node_mul_classnum_boxnum)
# add class * M * index
outputs_add_class_M_index = [result_name + "@add_class_M_index"]
node_add_class_M_index = onnx.helper.make_node(
'Add',
inputs=outputs_mul_classnum_boxnum + outputs_gather_2_nonzero,
outputs=outputs_add_class_M_index)
node_list.append(node_add_class_M_index)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index = [result_name + "@squeeze_select_index"]
node_squeeze_select_index = onnx.helper.make_node(
'Squeeze',
inputs=outputs_add_class_M_index,
outputs=outputs_squeeze_select_index,
axes=[0, 2])
node_list.append(node_squeeze_select_index)
# gather the data from flatten scores
outputs_gather_select_scores = [result_name + "@gather_select_scores"]
node_gather_select_scores = onnx.helper.make_node('Gather',
inputs=outputs_reshape_scores_rank1 + \
outputs_squeeze_select_index,
outputs=outputs_gather_select_scores,
axis=0)
node_list.append(node_gather_select_scores)
# get nums to input TopK
outputs_shape_select_num = [result_name + "@shape_select_num"]
node_shape_select_num = onnx.helper.make_node(
'Shape',
inputs=outputs_gather_select_scores,
outputs=outputs_shape_select_num)
node_list.append(node_shape_select_num)
outputs_gather_select_num = [result_name + "@gather_select_num"]
node_gather_select_num = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_select_num + [result_name + "@const_0"],
outputs=outputs_gather_select_num,
axis=0)
node_list.append(node_gather_select_num)
outputs_unsqueeze_select_num = [result_name + "@unsqueeze_select_num"]
node_unsqueeze_select_num = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_select_num,
outputs=outputs_unsqueeze_select_num,
axes=[0])
node_list.append(node_unsqueeze_select_num)
outputs_concat_topK_select_num = [result_name + "@conat_topK_select_num"]
node_conat_topK_select_num = onnx.helper.make_node(
'Concat',
inputs=outputs_unsqueeze_select_num + name_keep_top_k_2D,
outputs=outputs_concat_topK_select_num,
axis=0)
node_list.append(node_conat_topK_select_num)
outputs_cast_concat_topK_select_num = [
result_name + "@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num = onnx.helper.make_node(
'Cast',
inputs=outputs_concat_topK_select_num,
outputs=outputs_cast_concat_topK_select_num,
to=6)
node_list.append(node_outputs_cast_concat_topK_select_num)
# get min(topK, num_select)
outputs_compare_topk_num_select = [result_name + "@compare_topk_num_select"]
node_compare_topk_num_select = onnx.helper.make_node(
'ReduceMin',
inputs=outputs_cast_concat_topK_select_num,
outputs=outputs_compare_topk_num_select,
keepdims=0)
node_list.append(node_compare_topk_num_select)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices = [
result_name + "@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_compare_topk_num_select,
outputs=outputs_unsqueeze_topk_select_indices,
axes=[0])
node_list.append(node_unsqueeze_topk_select_indices)
# cast the indices to INT64
outputs_cast_topk_indices = [result_name + "@cast_topk_indices"]
node_cast_topk_indices = onnx.helper.make_node(
'Cast',
inputs=outputs_unsqueeze_topk_select_indices,
outputs=outputs_cast_topk_indices,
to=7)
node_list.append(node_cast_topk_indices)
# select topk scores indices
outputs_topk_select_topk_indices = [result_name + "@topk_select_topk_values",\
result_name + "@topk_select_topk_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_gather_select_scores + outputs_cast_topk_indices,
outputs=outputs_topk_select_topk_indices)
node_list.append(node_topk_select_topk_indices)
# gather topk label, scores, boxes
outputs_gather_topk_scores = [result_name + "@gather_topk_scores"]
node_gather_topk_scores = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_select_scores +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_scores,
axis=0)
node_list.append(node_gather_topk_scores)
outputs_gather_topk_class = [result_name + "@gather_topk_class"]
node_gather_topk_class = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_class,
axis=1)
node_list.append(node_gather_topk_class)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
node_gather_topk_boxes_id = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_boxes_id,
axis=1)
node_list.append(node_gather_topk_boxes_id)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id = [result_name + "@squeeze_topk_boxes_id"]
node_squeeze_topk_boxes_id = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_topk_boxes_id,
outputs=outputs_squeeze_topk_boxes_id,
axes=[0, 2])
node_list.append(node_squeeze_topk_boxes_id)
outputs_gather_select_boxes = [result_name + "@gather_select_boxes"]
node_gather_select_boxes = onnx.helper.make_node(
'Gather',
inputs=inputs['BBoxes'] + outputs_squeeze_topk_boxes_id,
outputs=outputs_gather_select_boxes,
axis=1)
node_list.append(node_gather_select_boxes)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class = [result_name + "@cast_topk_class"]
node_cast_topk_class = onnx.helper.make_node(
'Cast',
inputs=outputs_gather_topk_class,
outputs=outputs_cast_topk_class,
to=1)
node_list.append(node_cast_topk_class)
outputs_unsqueeze_topk_scores = [result_name + "@unsqueeze_topk_scores"]
node_unsqueeze_topk_scores = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_topk_scores,
outputs=outputs_unsqueeze_topk_scores,
axes=[0, 2])
node_list.append(node_unsqueeze_topk_scores)
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_concat_final_results,
axis=2)
node_list.append(node_concat_final_results)
return node_list
此差异已折叠。
此差异已折叠。
此差异已折叠。
......@@ -41,10 +41,11 @@ class CaffeOptimizer(object):
if is_delete_node:
parent_node.fluid_code.clear()
node.fluid_code.clear()
node.fluid_code.add_layer("batch_norm",
inputs=input,
output=node,
param_attr=parent_param_attr)
node.fluid_code.add_layer(
"batch_norm",
inputs=input,
output=node,
param_attr=parent_param_attr)
def merge_op_activation(self):
for node_name in self.graph.topo_sort:
......@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
if is_delete_node:
parent_node.fluid_code.clear()
node.fluid_code.clear()
node.fluid_code.add_layer(op,
inputs=input,
output=node,
param_attr=parent_param_attr)
node.fluid_code.add_layer(
op,
inputs=input,
output=node,
param_attr=parent_param_attr)
......@@ -13,7 +13,6 @@
# limitations under the License.
# TODO useless node remove
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
class ONNXOptimizer(object):
......
此差异已折叠。
......@@ -13,6 +13,7 @@
| ShuffleNet | [code](https://github.com/TropComplique/shufflenet-v2-tensorflow) |-|
| mNASNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |-|
| EfficientNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |-|
| Inception_V3 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) |-|
| Inception_V4 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py) |-|
| Inception_ResNet_V2 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) |-|
| VGG16 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
......@@ -47,8 +48,8 @@
## ONNX
**注:** 部分模型来源于PyTorch,PyTorch的转换可参考[pytorch_to_onnx.md](pytorch_to_onnx.md)
| 模型 | 来源 | operator version|
|-------|--------|---------|
| 模型 | 来源 | operator version|备注|
|-------|--------|---------|---------|
| ResNet18 | [torchvison.model.resnet18](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| ResNet34 | [torchvison.model.resnet34](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| ResNet50 | [torchvison.model.resnet50](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
......@@ -64,4 +65,6 @@
| mNASNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9|
| EfficientNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9|
| SqueezeNet | [onnx official](https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz) |9|
|Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)| |
|Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)|9 |
|BERT| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
|GPT2| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册