opset.py 57.5 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46 47 48 49 50 51
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
52
        if dim < -1:
C
Channingss 已提交
53 54 55 56 57 58 59 60
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


C
Channingss 已提交
61
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
62 63 64 65 66 67 68
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
86
class OpSet9():
87 88 89 90 91
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
92 93
        'Pow': 'elementwise_pow',
    }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
129 130 131 132
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
157
    default_ioa_constraint = {}
158 159

    def __init__(self, decoder):
C
Channingss 已提交
160
        super(OpSet9, self).__init__()
161
        self.graph = decoder.graph
C
update  
channingss 已提交
162 163 164
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
165
        self.used_custom_layers = dict()
R
root 已提交
166

167
    @print_mapping_info
C
channingss 已提交
168
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
169 170 171 172
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
173 174 175
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
176 177 178 179 180 181 182 183
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
184
            fill_name_field, ) = info
C
update  
channingss 已提交
185

186 187
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
188 189 190 191 192 193 194 195 196 197 198 199
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
200
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
201
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
202 203 204 205
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
206 207 208
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
209
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
210
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
211
            attr['name'] = string(node.layer_name)
212 213 214 215 216 217 218 219 220 221
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
222 223 224
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
225
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
226 227 228
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
229 230 231 232 233 234
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
235 236
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
237
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
238 239 240
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
241

242
    @print_mapping_info
243 244 245
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
246

247 248
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
249 250 251
        inputs = {'x': val_x, 'y': val_y}
        node.fluid_code.add_layer(
            op_type, inputs=inputs, output=node, param_attr=None)
C
channingss 已提交
252

253
    @print_mapping_info
C
update  
channingss 已提交
254
    def place_holder(self, node):
C
channingss 已提交
255
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
256

C
channings 已提交
257 258
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
259 260 261
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
262
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
263 264
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
265
            "shape": shape,
C
update  
channingss 已提交
266 267 268 269
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

270 271
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
272

273
    @print_mapping_info
C
update  
channingss 已提交
274 275 276 277
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
278
        shape = node.out_shapes[0]
C
channingss 已提交
279 280
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
281 282 283 284 285 286 287
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
318
    def _interpolate(self, node):
C
channingss 已提交
319
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
320
        inputs = {'input': val_x}
321
        if node.layer_type == 'Resize':
C
Channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
348 349
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
350
            inputs['scale'] = val_scales
R
root 已提交
351 352

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
353 354
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
355
        if 'linear' in mode:
R
root 已提交
356 357 358
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
359
            fluid_op = 'resize_bilinear'
360
        node.fluid_code.add_layer(
C
Channingss 已提交
361
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
362

363
    @print_mapping_info
C
channings 已提交
364 365 366
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367 368 369

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
370 371 372
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
373 374 375 376 377
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
378 379 380 381 382 383 384 385
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
386 387 388
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
389

C
channings 已提交
390 391 392
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
393 394 395 396
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
397 398 399 400 401 402 403 404
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
405
    def Pad(self, node, op_independent=True):
C
channingss 已提交
406
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
407 408 409
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
410 411
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
412 413
        assume_pad2d = False
        attr = {}
C
channings 已提交
414
        paddings = []
C
update  
channingss 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
434 435 436 437
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
438 439 440
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
441 442
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
443 444
        else:
            attr['name'] = string(node.layer_name + '_paded')
445 446 447 448 449
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
450 451
            return node.layer_name + '_paded'

452
    @print_mapping_info
C
update  
channingss 已提交
453
    def Unsqueeze(self, node):
C
channingss 已提交
454
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
455
        axes = node.get_attr('axes')
456
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
457
        if len(val_x.out_shapes[0]) == 0:
458 459 460 461 462 463
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
464
        else:
C
update  
Channingss 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
            if str(val_x.dtype) == 'bool':
                val_x_cast = val_x.layer_name + '_cast'
                node.fluid_code.add_layer(
                    'cast',
                    inputs=val_x,
                    output=val_x_cast,
                    param_attr={'dtype': string('int64')})
                node.fluid_code.add_layer(
                    'unsqueeze',
                    inputs=val_x_cast,
                    output=node,
                    param_attr=attr)
            else:
                node.fluid_code.add_layer(
                    'unsqueeze', inputs=val_x, output=node, param_attr=attr)
480

481
    @print_mapping_info
C
channingss 已提交
482
    def Shrink(self, node):
C
channingss 已提交
483
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
484 485 486 487
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
488 489
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
490

491
    @print_mapping_info
C
update  
channingss 已提交
492 493 494 495 496 497 498 499
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
500

C
update  
channingss 已提交
501
        shape = node.get_attr('shape', None)
R
root 已提交
502

C
update  
channingss 已提交
503
        if shape is None:
C
channingss 已提交
504
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
505 506
        if shape is None:
            shape = list(value.shape)
507 508 509 510
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
511
        if len(value) == 1:
C
channingss 已提交
512
            value = value.tolist()
C
update  
channingss 已提交
513 514 515 516 517
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
518 519
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
520
        else:
521 522
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
523 524 525 526 527 528 529 530
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
531 532
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
533

534
    @print_mapping_info
C
update  
channingss 已提交
535
    def Resize(self, node):
536 537
        self._interpolate(node)

538
    @print_mapping_info
539 540 541
    def Upsample(self, node):
        self._interpolate(node)

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
557
    def Expand(self, node):
C
channingss 已提交
558
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
559
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
560
        if len(val_shape.outputs) == 1:
561 562
            self.omit_nodes.append(val_shape.layer_name)
        val_x_dtype = val_x.dtype
R
root 已提交
563
        name_ones = node.layer_name + '_ones'
C
Channingss 已提交
564 565 566 567 568
        attr_ones = {
            'shape': val_shape.layer_name,
            'dtype': string(val_x_dtype),
            'value': 1
        }
569
        node.fluid_code.add_layer(
C
Channingss 已提交
570 571 572 573
            'fill_constant',
            inputs=None,
            output=name_ones,
            param_attr=attr_ones)
R
root 已提交
574
        inputs = {'x': name_ones, 'y': val_x}
575 576 577 578
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
C
Channingss 已提交
579
            param_attr=None)
C
update  
channingss 已提交
580

581
    @print_mapping_info
C
channingss 已提交
582 583 584 585
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
586
        axis = node.get_attr('axis', 0)
587 588
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
589
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            if len(val_x.out_shapes[0]) <= 1:
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices},
                    output=node,
                    param_attr=None)
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
                    gather_ = node.layer_name + '_1'
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=gather_,
                        param_attr=None)
                    node.fluid_code.add_layer(
                        'squeeze',
                        inputs={'input': gather_,
                                'axes': [0]},
                        output=node,
                        param_attr=None)
                else:
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=node,
                        param_attr=None)
C
channingss 已提交
619 620
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
621 622 623
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
624 625 626 627 628 629 630 631 632 633 634 635 636
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
637 638 639 640
            if len(indices_shape) < 1:
                node.fluid_code.add_layer(
                    'squeeze',
                    inputs={'input': node,
C
Channingss 已提交
641
                            'axes': [axis]},
C
Channingss 已提交
642 643
                    output=node,
                    param_attr=None)
644 645 646
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
C
Channingss 已提交
647
                indices_cast = indices.layer_name + '_cast'
C
update  
Channingss 已提交
648 649 650
                node.fluid_code.add_layer(
                    'cast',
                    inputs=indices,
C
Channingss 已提交
651
                    output=indices_cast,
C
update  
Channingss 已提交
652
                    param_attr={'dtype': string('int64')})
653 654
                node.fluid_code.add_layer(
                    'embedding',
C
Channingss 已提交
655
                    inputs=indices_cast,
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
691
            from functools import reduce
R
root 已提交
692
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
693 694 695 696 697 698
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
699

C
Channingss 已提交
700 701 702
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
C
fix bug  
Channingss 已提交
703
            name_trans = val_x.layer_name + '_transpose'
704 705 706 707 708 709 710 711 712 713 714
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
C
fix bug  
Channingss 已提交
715
            input_transpose = node.layer_name + '_transpose'
716
            node.fluid_code.add_layer(
C
fix bug  
Channingss 已提交
717 718 719 720
                'transpose',
                inputs=node,
                output=input_transpose,
                param_attr=attr_trans)
C
Channingss 已提交
721 722 723 724 725 726
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
727 728
            node.fluid_code.add_layer(
                'reshape',
C
fix bug  
Channingss 已提交
729
                inputs=input_transpose,
730 731 732
                output=node,
                param_attr={'shape': reshaped_shape})

C
Channingss 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                'scatter',
                inputs={'input': val_x,
                        'index': indices,
                        'updates': updates},
                output=node,
                param_attr=None)
        else:
            input_inner_indices = node.layer_name + '_input_inner_indices'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': updates
                },
                output=input_inner_indices,
                param_attr=None)

            constant_minus_one = node.layer_name + '_constant_minus_one'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_minus_one,
                param_attr={
                    'shape': updates.out_shapes[0],
                    'dtype': string(updates.dtype),
                    'value': -1
                })

            indices_mask = node.layer_name + '_indices_mask'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': constant_minus_one
                },
                output=indices_mask,
                param_attr=None)

            constant_1 = node.layer_name + '_constant_1'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_1,
                param_attr={
                    'shape': val_x.out_shapes[0],
                    'dtype': string(val_x.dtype),
                    'value': 1
                })
            input_out_indices_mask = node.layer_name + '_input_out_indices_mask'
            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": indices_mask,
                        "y": constant_1},
                output=input_out_indices_mask,
                param_attr=None)

            input_out_indices = node.layer_name + '_input_out_indices'
            node.fluid_code.add_layer(
                "elementwise_mul",
                inputs={"x": val_x,
                        "y": input_out_indices_mask},
                output=input_out_indices,
                param_attr=None)

            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
                output=node,
                param_attr=None)

813 814 815 816 817 818 819 820 821 822 823 824 825 826
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
827
    def Slice(self, node):
C
channingss 已提交
828
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
829
        starts, ends, axes, steps = None, None, None, None
830
        attr = {}
C
channingss 已提交
831 832 833
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
834
            if len(node.inputs) > 3:
C
channings 已提交
835
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
836
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
837
            if len(node.inputs) > 4:
C
channings 已提交
838
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
839
                steps = _const_weight_or_none(steps)
840 841 842 843 844 845 846
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
847 848
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
849 850 851 852 853 854 855 856 857 858 859 860 861 862
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
C
fix bug  
Channingss 已提交
863
                    starts_cast = starts.layer_name + '_cast'
864 865 866
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
C
fix bug  
Channingss 已提交
867
                        output=starts_cast,
868
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
869
                    attr['starts'] = starts_cast
870
                if ends.dtype != 'int32':
C
update  
Channingss 已提交
871
                    ends_cast = ends.layer_name + '_cast'
872 873 874
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
C
fix bug  
Channingss 已提交
875
                        output=ends_cast,
876
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
877
                    attr['ends'] = ends_cast
C
channingss 已提交
878 879 880 881
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
882 883 884 885
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
886

887 888
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
889

890
    @print_mapping_info
C
update  
channingss 已提交
891
    def ConstantOfShape(self, node):
C
channingss 已提交
892
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
893
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
894 895 896 897

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
898 899
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
900 901
        if len(value) == 1:
            value = value[0]
902 903 904 905 906 907 908
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
909

910
    @print_mapping_info
C
update  
channingss 已提交
911
    def Split(self, node):
C
channingss 已提交
912 913
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
914 915

        fluid_op = 'split'
C
channingss 已提交
916
        split = node.get_attr('split')
C
update  
channingss 已提交
917
        axis = node.get_attr('axis', 0)
C
channingss 已提交
918 919 920 921 922
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
923

924 925
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
926

927
    @print_mapping_info
C
update  
channingss 已提交
928
    def Reshape(self, node):
C
channingss 已提交
929 930
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
931
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
932 933 934 935 936 937 938 939 940 941
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
C
Channingss 已提交
942 943
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
C
Channingss 已提交
944 945 946 947 948 949
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': node.out_shapes[0]},
                output=node,
                param_attr=attr)
950 951 952 953 954 955 956
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
957 958 959 960 961 962 963
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
964 965 966 967 968 969 970
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
971 972 973 974 975 976 977
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
978 979 980 981 982 983 984 985
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
986
    def Cast(self, node):
C
channingss 已提交
987
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
988 989 990 991 992 993 994 995 996 997
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
998 999
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
1000

C
Channingss 已提交
1001 1002 1003 1004 1005
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        node.fluid_code.add_layer('logical_not', inputs=val_input, output=node)

1006
    @print_mapping_info
C
update  
channingss 已提交
1007
    def AveragePool(self, node):
C
channingss 已提交
1008
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1009 1010

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1011 1012 1013 1014 1015 1016 1017 1018
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1019

C
channingss 已提交
1020 1021
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1022
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1023
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1024 1025 1026 1027 1028
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1029

C
update  
channingss 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

1040 1041
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1042

1043
    @print_mapping_info
C
update  
channingss 已提交
1044 1045
    def Concat(self, node):
        inputs = []
C
Channingss 已提交
1046
        dtypes = set()
C
update  
channingss 已提交
1047
        for i in range(len(node.layer.input)):
C
channingss 已提交
1048
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
1049 1050 1051 1052
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
C
Channingss 已提交
1053 1054 1055
                dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1056 1057
        axis = node.get_attr('axis')
        attr = {'axis': axis}
1058 1059
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1060

1061
    @print_mapping_info
C
update  
channingss 已提交
1062
    def Flatten(self, node):
C
channingss 已提交
1063
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1064 1065
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
1066 1067
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1068

1069
    @print_mapping_info
C
update  
channingss 已提交
1070
    def Gemm(self, node):
C
channingss 已提交
1071 1072 1073
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
1087 1088 1089 1090 1091
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
1092

C
update  
channingss 已提交
1093 1094 1095 1096
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
1097 1098 1099 1100 1101
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1102
            else:
C
channingss 已提交
1103 1104
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
1105 1106 1107 1108 1109
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
1110 1111 1112

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
1113 1114 1115 1116 1117
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1118

1119
    @print_mapping_info
C
update  
channingss 已提交
1120
    def Sum(self, node):
1121
        val_inps = node.layer.input
1122
        inputs = {
1123 1124 1125 1126
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1127 1128
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1129

C
channingss 已提交
1130 1131
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1132 1133
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1134
                "y": y,
1135
            }
1136 1137
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1138

1139
    @print_mapping_info
C
update  
channingss 已提交
1140
    def MatMul(self, node):
C
channingss 已提交
1141 1142
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1143 1144
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1145
        inputs = {"x": val_x, "y": val_y}
C
Channingss 已提交
1146
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
C
Channingss 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            y_squeeze = val_y.layer_name + '_squeeze'
            node.fluid_code.add_layer(
                "squeeze",
                inputs=val_y,
                output=y_squeeze,
                param_attr={'axes': [0]})
            inputs['y'] = y_squeeze
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
        else:
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
C
update  
channingss 已提交
1159

1160
    @print_mapping_info
C
update  
channingss 已提交
1161
    def BatchNormalization(self, node):
C
channingss 已提交
1162 1163 1164 1165 1166
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1176 1177
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1178 1179 1180 1181
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1182
            "is_test": True,
C
update  
channingss 已提交
1183 1184 1185 1186
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1187
            "use_global_stats": spatial,
C
update  
channingss 已提交
1188 1189
            "name": string(node.layer_name)
        }
1190 1191
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1192

1193
    @print_mapping_info
C
update  
channingss 已提交
1194
    def Transpose(self, node):
C
channingss 已提交
1195
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1196 1197
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1198 1199
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1200

1201
    @print_mapping_info
C
update  
channingss 已提交
1202
    def Relu(self, node):
C
channingss 已提交
1203
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1204
        attr = {"name": string(node.layer_name)}
1205 1206
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1207

1208
    @print_mapping_info
C
update  
channingss 已提交
1209
    def PRelu(self, node):
C
channingss 已提交
1210 1211
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1212

C
channingss 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1223 1224
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1225

1226
    @print_mapping_info
C
update  
channingss 已提交
1227
    def Squeeze(self, node):
C
channingss 已提交
1228 1229 1230
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1231 1232 1233 1234 1235 1236 1237 1238 1239
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1240

1241
    @print_mapping_info
C
channings 已提交
1242 1243 1244
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1245 1246 1247 1248 1249 1250 1251
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1263
    @print_mapping_info
C
channings 已提交
1264 1265 1266 1267
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1268

C
channings 已提交
1269
        not_condition = condition.layer_name + '_not'
1270 1271 1272 1273 1274
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1275
        cast_not_condition = not_condition + '_cast'
1276 1277 1278 1279 1280
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1281
        cast_condition = condition.layer_name + '_cast'
1282 1283 1284 1285 1286
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1287
        mul_val_x = val_x.layer_name + '_mul'
1288 1289 1290 1291 1292 1293
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
C
channings 已提交
1294
        mul_val_y = val_y.layer_name + '_mul'
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1310 1311
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1331
    def Identity(self, node):
C
channingss 已提交
1332
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1333
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1334

1335
    @print_mapping_info
C
channings 已提交
1336 1337 1338 1339
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1340

1341 1342
        if repeats is None:
            repeats = val_repeats.layer_name
J
jiangjiajun 已提交
1343 1344 1345
            if val_repeats.dtype != 'int32':
                attr = {"dtype": string("int32")}
                node.fluid_code.add_layer(
C
Channingss 已提交
1346 1347
                    "cast",
                    inputs=repeats,
J
jiangjiajun 已提交
1348 1349
                    output="{}.tmp".format(repeats),
                    param_attr=attr)
J
jiangjiajun 已提交
1350 1351
                repeats = "{}.tmp".format(repeats)

1352
        elif isinstance(repeats, int):
C
channings 已提交
1353
            repeats = [repeats]
R
root 已提交
1354

C
channings 已提交
1355
        attr = {
R
root 已提交
1356
            'expand_times': repeats,
C
channings 已提交
1357 1358
            "name": string(node.layer_name),
        }
1359 1360
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1361

1362
    @print_mapping_info
C
update  
channingss 已提交
1363
    def MaxPool(self, node):
C
channingss 已提交
1364
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1365
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1377

C
channingss 已提交
1378 1379
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1380
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1381
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1382 1383 1384 1385 1386
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1387

C
update  
channingss 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1397 1398
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1399

C
channings 已提交
1400
    def _global_pool(self, node):
C
channingss 已提交
1401
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1402
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1403
        fluid_op = 'pool2d'
C
channings 已提交
1404 1405 1406 1407 1408 1409
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1410
        attr = {
C
channings 已提交
1411
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1412 1413 1414
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1415 1416
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1417

1418
    @print_mapping_info
C
channings 已提交
1419 1420
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1421

1422
    @print_mapping_info
C
channings 已提交
1423 1424
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1425

1426
    @print_mapping_info
C
update  
channingss 已提交
1427
    def Conv(self, node):
C
channingss 已提交
1428 1429
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1430 1431 1432 1433 1434 1435
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1436
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1437 1438 1439
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1440
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1441 1442
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1443
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1444 1445 1446
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1447 1448 1449
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1450

C
channingss 已提交
1451
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1452 1453
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1454
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1455 1456 1457 1458 1459
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1475 1476
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1477

1478
    @print_mapping_info
C
channingss 已提交
1479
    def ConvTranspose(self, node):
C
channingss 已提交
1480 1481
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1482
        val_b = None
R
root 已提交
1483
        if len(node.layer.input) > 2:
C
channingss 已提交
1484 1485
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1486 1487 1488 1489 1490 1491
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1492
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1493 1494 1495
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1496
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1497 1498
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1499 1500 1501 1502 1503
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1504 1505 1506 1507

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1508

1509 1510
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1511
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1512 1513
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1524
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1525 1526
            'name': string(node.layer_name),
        }
1527 1528
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)