opset.py 108.7 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
S
SunAhong1993 已提交
125 126
    }

S
SunAhong1993 已提交
127 128 129
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
130 131 132
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
133
                    axes=None, keepdims=True)
134 135 136 137
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
138
                    axes=None, keepdim=True)
139 140 141 142
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
143
                    axes=None, keepdim=True)
144 145 146 147
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
148
                    axes=None, keepdim=True)
149
        ],
S
SunAhong1993 已提交
150 151
        # active function
        'Relu': ['paddle.nn.ReLU'],
152 153 154 155 156 157 158 159 160 161
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
162 163 164
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
165 166 167 168
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
169
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
170
        'Log': ['paddle.log'],
171 172 173
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
174 175 176 177
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
178 179
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
180 181 182 183 184 185 186 187 188
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
189
        self.done_weight_list = list()
190 191 192
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
193 194 195 196 197 198

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
214
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
215 216
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
217
            output_name = node.name
S
SunAhong1993 已提交
218
            layer_outputs = [op_name, output_name]
219

S
SunAhong1993 已提交
220 221
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
222
                inputs={"x": input.name},
S
SunAhong1993 已提交
223 224 225 226 227
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
228 229
                inputs={"x": input.name},
                outputs=[node.name],
230 231
                **layer_attrs)

S
SunAhong1993 已提交
232 233 234 235 236
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
237
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
238
        self.paddle_graph.add_layer(
239
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
240 241 242 243 244 245 246 247 248 249 250 251

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
252
            outputs=[node.name],
S
SunAhong1993 已提交
253 254
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
255 256 257 258 259 260 261

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
262

S
fix  
SunAhong1993 已提交
263
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
264
            self.paddle_graph.add_layer(
265 266
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
267
                outputs=[node.name],
S
SunAhong1993 已提交
268 269 270 271
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
272
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
273 274 275
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
276
                outputs=[node.name],
S
SunAhong1993 已提交
277
                shape=shape,
S
SunAhong1993 已提交
278
                attr=string(node.name),
S
SunAhong1993 已提交
279
                dtype=string(dtype),
280
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
297
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
298
        attrs = dict()
W
WJJ1995 已提交
299
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
300 301 302 303
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
304
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
305
                # which is the same as the rank of input.
W
WJJ1995 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
333 334 335
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
336
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
337
                # which is the same as the rank of input.
338 339
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
340 341 342
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
343
                size_values = _const_weight_or_none(val_sizes)
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
405 406
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
407
                    })
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
423
                return
S
SunAhong1993 已提交
424
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
425 426 427 428 429 430 431 432 433 434 435 436
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
437

S
SunAhong1993 已提交
438
        mode = node.get_attr('mode', 'nearest')
439 440 441 442 443
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
444 445
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
446 447
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
448 449 450 451 452 453
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
454 455 456
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
457
            outputs=[node.name],
S
SunAhong1993 已提交
458
            **attrs)
459

W
wjj19950828 已提交
460 461 462 463 464 465 466 467 468 469 470 471
    @print_mapping_info
    def CumSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = self.graph.get_input_node(node, idx=1, copy=True)
        axis_values = _const_weight_or_none(axis)
        layer_attrs = {'axis': axis_values}
        self.paddle_graph.add_layer(
            'paddle.cumsum',
            inputs={"x": val_x.name},
            outputs=[node.name],
            **layer_attrs)

S
SunAhong1993 已提交
472 473 474 475 476 477 478
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
479 480
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
481 482 483 484
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
485 486
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
487
            min=0.0,
488 489
            max=1.0)

S
SunAhong1993 已提交
490 491 492 493 494 495 496 497
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
498 499 500 501
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
502 503 504 505 506 507 508 509 510 511

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
512 513 514 515 516 517
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
518 519 520 521 522 523 524 525 526 527 528 529 530 531
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
532 533 534 535 536
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
537
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
538 539
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
540
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
541 542 543
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
559
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
560 561 562
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
563 564 565 566 567 568
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
569 570 571 572 573 574 575 576
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
577
        mode = node.get_attr('mode', 'constant')
578 579
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
580 581 582
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
583
        assume_pad = False
S
SunAhong1993 已提交
584 585
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
586 587 588
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
589
        else:
S
fix  
SunAhong1993 已提交
590 591 592
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
593 594
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
595
            if len(pads) == 10 and sum(pads) == 0:
596
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
597
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
598
                if data_shape:
599 600
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
601
                if output_shape:
602 603
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
604 605 606 607
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
608
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
609 610 611
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
612 613
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
614
                    if output_shape:
615 616
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
617 618 619
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
620 621
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
622 623
                        layer_attrs['pad'] = paddings
                    else:
624 625
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
626
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
627
                if data_shape:
628 629
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
630
                if output_shape:
631 632
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
633
                if assume_pad:
S
for pad  
SunAhong1993 已提交
634
                    paddle_op = 'paddle.nn.Pad2D'
W
wjj19950828 已提交
635
                    # x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
S
fix  
SunAhong1993 已提交
636
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
637
                        (2, -1)).transpose().astype("int32")
W
wjj19950828 已提交
638 639
                    if mode == 'constant':
                        paddings = paddings.flatten().tolist()
S
for pad  
SunAhong1993 已提交
640 641
                        layer_attrs['padding'] = paddings
                    else:
W
wjj19950828 已提交
642 643 644 645 646 647 648 649 650 651
                        paddings = np.flip(paddings, axis=0).flatten().tolist()
                        if sum(paddings[:4]) == 0:
                            paddings = paddings[4:]
                            layer_attrs['padding'] = paddings
                        else:
                            layer_attrs["pad"] = paddings
                            paddle_op = "custom_layer:PadAllDim4WithOneInput"
                else:
                    paddle_op = 'paddle.nn.functional.pad'
                    layer_attrs["pad"] = np.array(pads).tolist()
S
SunAhong1993 已提交
652
            else:
W
wjj19950828 已提交
653
                pad_data_temp = pads[0::2]
654
                pad_data_all = []
W
wjj19950828 已提交
655 656 657
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
658 659 660 661 662 663 664 665 666

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
667
            self.paddle_graph.add_layer(
668 669 670 671
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
672
                **layer_attrs)
S
fix  
SunAhong1993 已提交
673
            if not op_independent:
S
SunAhong1993 已提交
674
                return node.name + '_paded'
S
SunAhong1993 已提交
675
        else:
S
fix  
SunAhong1993 已提交
676 677
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
678
                if data_shape:
679 680
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
681
                if output_shape:
682 683
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
684 685 686 687 688 689 690 691
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
692 693 694
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
695 696 697 698 699 700
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
701 702
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
703
                    if output_shape:
704 705
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
706 707 708
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
709 710 711 712
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
713 714 715 716 717 718
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
719 720
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
721
                if output_shape:
722 723
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
724 725
                if assume_pad:
                    self.paddle_graph.add_layer(
726 727 728 729
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
730 731 732
                        value=value,
                        mode=string(mode))
            else:
733
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
734 735
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
736 737 738 739 740

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
741 742
        if axes is None:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
Y
fix  
yeliang2258 已提交
743 744 745 746 747 748 749
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
S
SunAhong1993 已提交
750
        else:
Y
fix  
yeliang2258 已提交
751 752 753 754 755 756 757 758 759 760 761 762
            if isinstance(axes, list) or isinstance(axes, tuple):
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name},
                    axis=axes,
                    outputs=[node.name])
            else:
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name,
                            "axis": axes.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
763 764 765 766 767 768 769 770

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
771 772 773
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
795
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
796 797 798 799
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
800 801
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
802
                outputs=[node.name],
S
SunAhong1993 已提交
803 804 805 806 807
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
808
            self.weights[node.name] = value
S
SunAhong1993 已提交
809 810 811
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
812
                outputs=[node.name],
S
SunAhong1993 已提交
813
                shape=shape,
S
SunAhong1993 已提交
814
                attr=string(node.name),
S
SunAhong1993 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
829
        output_name = node.name
S
SunAhong1993 已提交
830 831 832 833 834
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
835 836
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
837 838 839 840 841
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
842
        if dim == 3:
S
SunAhong1993 已提交
843 844 845 846 847 848
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
849 850 851
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
852
        self.paddle_graph.add_layer(
853 854 855
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
856 857 858 859 860 861 862
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
863
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
877
        self.paddle_graph.add_layer(
878 879
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
880
        self.paddle_graph.add_layer(
881
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
882

Y
yeliang2258 已提交
883 884 885 886 887 888 889 890
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
891 892 893 894 895 896 897 898 899 900 901 902
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
903 904 905
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
906 907
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
Y
yeliang2258 已提交
908 909 910 911 912
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={"x": indices.name},
                        outputs=[indices.name],
                        shape=[-1, ])
S
SunAhong1993 已提交
913
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
914 915
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
916 917
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
918 919 920 921
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
922
                        outputs=[node.name],
S
SunAhong1993 已提交
923 924 925 926
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
927 928 929
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
930 931 932
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
933
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
934 935
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
936
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
937 938 939 940 941
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
942 943
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
944 945 946
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
947
            self.paddle_graph.add_layer(
948 949 950
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
S
SunAhong1993 已提交
951
                perm=new_perm)
S
SunAhong1993 已提交
952 953 954
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
955 956
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
957 958 959 960
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
961
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
962 963
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
964
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
965
                    outputs=[indices_cast],
S
SunAhong1993 已提交
966 967
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
968
                output_name = node.name
S
SunAhong1993 已提交
969
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
970
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
971 972 973 974
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
975 976
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
977 978 979
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
980
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
981 982
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
983
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
984 985 986 987 988 989
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
990
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
991
                            'index': indices_reshape},
S
SunAhong1993 已提交
992
                    outputs=[node.name])
S
SunAhong1993 已提交
993 994 995 996 997 998 999 1000
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1001 1002
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
1003 1004 1005 1006
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
1007
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
1008 1009
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1010
                inputs={"x": indices.name},
S
SunAhong1993 已提交
1011 1012 1013 1014 1015
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
1016
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
1017 1018
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
1019
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1020 1021 1022 1023 1024 1025
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
1026 1027
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
1028 1029 1030
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
1031 1032
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
1033
                inputs={"x": node.name},
S
SunAhong1993 已提交
1034
                outputs=[input_transpose],
S
SunAhong1993 已提交
1035 1036
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
1046
                outputs=[node.name],
S
SunAhong1993 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1057 1058 1059 1060 1061
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1062
                outputs=[node.name])
S
SunAhong1993 已提交
1063
        else:
S
SunAhong1993 已提交
1064
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1065 1066 1067
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1068 1069
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1070 1071
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1072
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1073 1074
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1075
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1076 1077 1078 1079 1080
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1081 1082
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1083 1084
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1085 1086
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1087 1088 1089
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1090
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1091 1092 1093 1094 1095 1096 1097
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1098
                    'index': indices.name,
S
SunAhong1993 已提交
1099 1100 1101
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1102
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1103 1104 1105
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1106
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1107 1108 1109
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1110
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1111 1112 1113 1114 1115 1116
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1117
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1118 1119
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1120
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1121 1122 1123 1124 1125 1126 1127
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1128
                outputs=[node.name])
S
SunAhong1993 已提交
1129 1130 1131 1132 1133 1134 1135

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1136 1137 1138 1139 1140
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1141 1142 1143
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1144
            outputs=[node.name],
S
SunAhong1993 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1156 1157
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1158
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1159 1160 1161 1162 1163
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1164
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1165 1166
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1167 1168
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1169
                steps = _const_weight_or_none(steps).tolist()
1170

S
SunAhong1993 已提交
1171 1172
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1173 1174
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1175
            }
S
SunAhong1993 已提交
1176
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1177 1178 1179
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1180 1181
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1182 1183 1184 1185
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1186

S
SunAhong1993 已提交
1187 1188 1189 1190 1191 1192 1193
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1194
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1195 1196
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1197
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1198 1199 1200 1201
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1202
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1203 1204
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1205 1206
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1207
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1208 1209 1210 1211 1212 1213 1214
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1215 1216 1217 1218
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1219 1220 1221 1222 1223 1224 1225 1226
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1227 1228 1229
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1230 1231 1232
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1233 1234 1235
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1250
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1251
            self.paddle_graph.add_layer(
1252 1253
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1254
                outputs=[node.name],
S
SunAhong1993 已提交
1255 1256
                **layer_attrs)

Y
yeliang2258 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1279

S
SunAhong1993 已提交
1280
            self.paddle_graph.add_layer(
1281 1282 1283
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1284 1285
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1301 1302 1303 1304 1305 1306
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def GatherND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1442 1443 1444 1445 1446 1447
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1457
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1473
        else:
Y
yeliang2258 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1485
            else:
Y
yeliang2258 已提交
1486
                outputs_list.append(node.name)
W
wjj19950828 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
            if len(split) > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1511 1512
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1513 1514 1515 1516 1517
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1518 1519
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1520 1521 1522 1523 1524 1525
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1526 1527
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1528
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1529 1530 1531 1532 1533 1534
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1535 1536
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1537 1538
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1539
                outputs=[node.name])
S
SunAhong1993 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1554 1555 1556
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1557 1558 1559 1560 1561
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1562 1563 1564 1565
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1589 1590 1591 1592 1593
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1594
        layer_attrs = {
S
SunAhong1993 已提交
1595 1596 1597
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1598 1599 1600 1601
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1602 1603 1604
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1605 1606 1607 1608 1609 1610 1611 1612
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1613
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1614 1615 1616 1617 1618
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1619 1620 1621
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1622 1623 1624 1625 1626
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1627
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1639 1640
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1641
            outputs=[node.name],
S
SunAhong1993 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1654
        val_mm = node.name + '_mm'
1655
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1666
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1667 1668 1669

        if beta != 0:
            if beta == 1.:
1670
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1671
                self.paddle_graph.add_layer(
1672
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1673
            else:
S
SunAhong1993 已提交
1674
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1675 1676
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1677
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1678 1679 1680 1681
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1682
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1683 1684 1685 1686 1687

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1688 1689 1690 1691
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1692
        }
1693 1694
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1695 1696 1697 1698

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1699 1700
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1701 1702
            }
            self.paddle_graph.add_layer(
1703
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1704 1705 1706 1707 1708 1709 1710

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1711
        inputs_dict = {"x": val_x.name, "y": val_y.name}
S
SunAhong1993 已提交
1712
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1713
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1714 1715
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1716
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1717 1718 1719 1720
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1721
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1722 1723
        else:
            self.paddle_graph.add_layer(
1724
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1725 1726 1727 1728

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1729
        output_name = node.name
S
SunAhong1993 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1762

S
SunAhong1993 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1773 1774 1775
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1776 1777 1778 1779 1780
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1781 1782 1783 1784
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1785
        self.paddle_graph.add_layer(
1786
            "paddle.transpose",
S
SunAhong1993 已提交
1787
            inputs={"x": val_x.name},
1788
            outputs=[node.name],
S
SunAhong1993 已提交
1789 1790 1791 1792 1793
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1794
        output_name = node.name
S
SunAhong1993 已提交
1795 1796 1797 1798 1799 1800
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1801
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1802 1803
            mode = 'all'

S
SunAhong1993 已提交
1804 1805 1806
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1807 1808
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1809 1810 1811 1812
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1813 1814
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1815 1816 1817
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1818 1819
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1820
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1821 1822
            self.paddle_graph.add_layer(
                "paddle.multiply",
1823 1824
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1825 1826 1827
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1828 1829 1830 1831
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1832
                outputs=[output_name])
S
SunAhong1993 已提交
1833
        else:
S
fix  
SunAhong1993 已提交
1834
            if mode == 'channel':
S
SunAhong1993 已提交
1835
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1836 1837
                if slope_data is None:
                    self.paddle_graph.add_layer(
1838 1839
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1840 1841 1842
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1843
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1844
                        inputs={"x": val_x.name,
1845
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1846 1847
                        outputs=[node.name])
                    return
C
Channingss 已提交
1848
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1849
                if len(shape_slope) > 1:
1850 1851
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1852 1853 1854
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1855
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1856
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1857
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1858
            self.paddle_graph.add_layer(
1859 1860 1861
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1862
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1863 1864 1865 1866 1867 1868 1869 1870

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1871 1872
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1873 1874 1875
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1876 1877 1878
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1879 1880 1881 1882 1883 1884 1885 1886
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1887 1888 1889
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1890 1891 1892 1893 1894 1895 1896

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1897 1898
            inputs={'x': val_x.name,
                    'y': val_y.name},
1899
            outputs=[node.name])
S
SunAhong1993 已提交
1900 1901 1902 1903 1904 1905 1906

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1907
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1908 1909
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1910
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1911 1912 1913 1914 1915 1916 1917
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1918
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1919 1920
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1921
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1922 1923
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1924
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1925 1926
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1927
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1928 1929
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1930
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1931 1932
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1933
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1934 1935 1936 1937 1938 1939 1940
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1941
            outputs=[node.name])
S
SunAhong1993 已提交
1942 1943 1944 1945 1946 1947 1948

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1949 1950
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1951
                outputs=[val_x.name])
S
SunAhong1993 已提交
1952 1953
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1954
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1955
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1956 1957 1958
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1959 1960
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1961
                outputs=[val_x.name])
S
SunAhong1993 已提交
1962 1963
            self.paddle_graph.add_layer(
                "paddle.split",
1964
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1965
                outputs=[val_x.name],
S
SunAhong1993 已提交
1966 1967 1968
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1969
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1970 1971 1972 1973 1974

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1975
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1976 1977 1978 1979 1980 1981 1982 1983

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1984
            repeats = val_repeats.name
S
SunAhong1993 已提交
1985 1986 1987 1988
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1989
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1990
                    dtype=string("int32"))
1991
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1992 1993 1994 1995

        elif isinstance(repeats, int):
            repeats = [repeats]

1996 1997 1998
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1999 2000
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
2001
            "name": string(node.name),
S
SunAhong1993 已提交
2002 2003
        }
        self.paddle_graph.add_layer(
2004 2005 2006 2007
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
2008 2009 2010 2011

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2012
        output_name = node.name
S
SunAhong1993 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
2037

S
SunAhong1993 已提交
2038 2039 2040 2041 2042 2043 2044
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
2045 2046 2047
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2048 2049 2050 2051 2052
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2053
        output_name = node.name
S
SunAhong1993 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2067 2068 2069
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2070 2071
            output_size=output_shape[2:])

Y
yeliang2258 已提交
2072 2073
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
2074
        import paddle
Y
yeliang2258 已提交
2075
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2165
        self.paddle_graph.add_layer(
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2207 2208
            outputs=[node.name])

S
SunAhong1993 已提交
2209 2210 2211
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2212
        output_name = node.name
S
SunAhong1993 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2226 2227 2228
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2229 2230 2231 2232
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2233
        output_name = node.name
S
SunAhong1993 已提交
2234 2235
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2236 2237 2238 2239 2240 2241 2242 2243

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2271
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2300
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2301 2302
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2303 2304 2305 2306 2307 2308
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2309
        if has_bias:
C
Channingss 已提交
2310 2311
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2312 2313 2314 2315 2316 2317 2318
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2319 2320
        else:
            layer_attrs["bias_attr"] = False
2321 2322
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2323 2324 2325 2326
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2327 2328 2329
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2330
                shape=input_shape)
S
SunAhong1993 已提交
2331
        self.paddle_graph.add_layer(
2332 2333 2334
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2335 2336 2337 2338
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2339
        output_name = node.name
S
SunAhong1993 已提交
2340 2341
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2342 2343 2344 2345 2346 2347 2348 2349

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2361
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2362 2363 2364 2365 2366 2367 2368

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

W
wjj19950828 已提交
2369 2370
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2371

W
wjj19950828 已提交
2372
        if len(output_size) != 0:
W
wjj19950828 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2392

W
wjj19950828 已提交
2393 2394 2395 2396 2397 2398 2399 2400
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2401

S
fix  
SunAhong1993 已提交
2402
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2403
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2425
        layer_attrs = {
2426
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2427
            "out_channels": num_out_channels * num_groups,
2428
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2429 2430 2431
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2432
            "groups": num_groups,
2433 2434 2435 2436 2437 2438
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2439 2440
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2441
        if val_b is not None:
2442 2443 2444 2445 2446
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2447 2448
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2449
        self.paddle_graph.add_layer(
2450
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2451
            inputs=inputs_dict,
2452
            outputs=layer_outputs,
S
SunAhong1993 已提交
2453
            **layer_attrs)
2454

S
fix  
SunAhong1993 已提交
2455 2456 2457 2458 2459
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2460
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2461
        self.paddle_graph.add_layer(
2462 2463
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2464
            outputs=[node.name],
C
Channingss 已提交
2465 2466 2467
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2468 2469 2470
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2471
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2472 2473 2474 2475
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2476
            dtype=string('int64'))
S
SunAhong1993 已提交
2477
        self.paddle_graph.add_layer(
2478 2479
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2480 2481 2482
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2483 2484
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2485 2486
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2487 2488
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2489
        self.paddle_graph.add_layer(
2490
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2491 2492
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2493 2494
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2495 2496
                outputs=[node.name],
                dtype=string(node.dtype))
2497

S
SunAhong1993 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2508 2509 2510 2511 2512 2513
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2514 2515
            outputs=layer_outputs,
            axis=axis)
2516

S
SunAhong1993 已提交
2517 2518 2519 2520
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2521
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2522

2523 2524
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2525 2526 2527 2528 2529 2530
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2531
        have_bias = False
C
Channingss 已提交
2532
        if input_nums > 3 and node.layer.input[3] != '':
2533 2534
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2535
            have_bias = True
C
Channingss 已提交
2536 2537
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2538 2539
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2540 2541
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2542 2543
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2544 2545 2546 2547
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2548
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2549 2550
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2551 2552
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2553 2554 2555 2556
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2557
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2558 2559

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2560
        _rename_or_remove_weight(self.weights, input_weight.name)
2561
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2562 2563
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2564
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2565
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2566
        _rename_or_remove_weight(self.weights, bias.name)
2567 2568
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2569 2570 2571 2572 2573 2574

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2575
            slices = [w[:, x * n:y * n] for x, y in intervals]
2576
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2577

2578 2579 2580 2581
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2582

C
Channingss 已提交
2583
        weights = transform_weight_with_bias(
C
Channingss 已提交
2584 2585 2586 2587 2588
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2589
        yh_out = node.output(1)
C
Channingss 已提交
2590
        yc_out = node.output(2)
2591
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2606
        if direction == 'backward':
2607 2608 2609
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2610
        else:
C
Channingss 已提交
2611 2612 2613
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2614

C
Channingss 已提交
2615
        self.paddle_graph.add_layer(
2616 2617 2618 2619 2620
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2621 2622 2623 2624
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2625
            direction=string(direction),
C
Channingss 已提交
2626 2627 2628 2629 2630 2631
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2632
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2633 2634 2635 2636
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2637 2638
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2639 2640 2641 2642
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2643 2644 2645 2646 2647 2648
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2649 2650
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2651 2652 2653 2654
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2655
        self.paddle_graph.add_layer(
2656
            "paddle.topk",
S
SunAhong1993 已提交
2657
            inputs={"x": val_x.name,
2658 2659 2660 2661 2662
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2663
            **layer_attrs)
2664

S
add lrn  
SunAhong1993 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2675
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2676
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2677
            "paddle.nn.LocalResponseNorm",
2678 2679
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2680
            **layer_attrs)
2681

S
SunAhong1993 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2694
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2695 2696 2697 2698
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2699
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2700 2701 2702 2703
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2704
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2705 2706 2707 2708 2709
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2710
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2711 2712 2713 2714
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2715
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2716 2717 2718 2719
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
W
wjj19950828 已提交
2731 2732 2733
        layer_attrs["keep_top_k"] = -1
        layer_attrs["nms_threshold"] = 0.0
        layer_attrs["score_threshold"] = 0.0
2734 2735 2736
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
W
wjj19950828 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
            max_output_boxes_per_class = _const_weight_or_none(
                max_output_boxes_per_class)
            if len(scores.out_shapes[0]) != 0:
                num_classes = scores.out_shapes[0][1]
            else:
                num_classes = 1
            if max_output_boxes_per_class is not None:
                max_output_boxes_per_class = max_output_boxes_per_class.tolist()
                if isinstance(max_output_boxes_per_class, int):
                    layer_attrs[
                        "keep_top_k"] = max_output_boxes_per_class * num_classes
                else:
                    layer_attrs["keep_top_k"] = max_output_boxes_per_class[
                        0] * num_classes
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)