gen_some_samples.py 5.5 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull

M
fix doc  
Macrobull 已提交
8 9
Not all ops in this file are supported by both PyTorch and ONNX
This only demostrates the conversion/validation workflow from PyTorch to ONNX to Paddle fluid
M
Macrobull 已提交
10 11 12 13 14 15 16 17
"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

M
Macrobull 已提交
18
from onnx2fluid.torch_export_helper import export_onnx_with_validation
M
Macrobull 已提交
19

M
Macrobull 已提交
20
prefix = 'sample_'
M
Macrobull 已提交
21 22
idx = 0

M
Macrobull 已提交
23
######## example: RNN ########
M
Macrobull 已提交
24

M
Macrobull 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.gru = nn.GRU(4, 5, 3)
        self.lstm = nn.LSTM(5, 6, 2)

    def forward(self, x):
        y = x
        y, h = self.gru(y)
        y, h = self.lstm(y)
        return y


model = Model()
model.eval()
xb = torch.rand((2, 3, 4))
yp = model(xb)
idx += 1
print('index: ', idx)
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)

######## example: random ########


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        y = torch.rand((2, 3))  # + torch.rand_like(xb)
        y = y + torch.randn((2, 3))  # + torch.randn_like(xb)
        return y


model = Model()
model.eval()
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
73 74 75

######## example: fc ########

M
Macrobull 已提交
76

M
Macrobull 已提交
77 78 79 80 81 82 83 84 85 86 87 88
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc = nn.Linear(3, 8)

    def forward(self, x):
        y = x
        y = self.fc(y)
        return y


model = Model()
89
model.eval()
M
Macrobull 已提交
90 91 92 93
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
94 95 96 97
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
98 99 100

######## example: compare ########

M
Macrobull 已提交
101

M
Macrobull 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x0, x1):
        x0 = x0.clamp(-1, 1)
        a = torch.max(x0, x1) == x1
        b = x0 < x1
        c = x0 > x1
        return a, b, c


model = Model()
115
model.eval()
M
Macrobull 已提交
116 117 118 119 120
xb0 = torch.rand((2, 3))
xb1 = torch.rand((2, 3))
ya, yb, yc = model(xb0, xb1)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
121 122 123 124
export_onnx_with_validation(model, [xb0, xb1],
                            prefix + str(idx), ['x0', 'x1'], ['ya', 'yb', 'yc'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
125 126 127

######## example: affine_grid ########

M
Macrobull 已提交
128

M
Macrobull 已提交
129 130 131 132 133 134 135 136 137 138
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, theta):
        grid = F.affine_grid(theta, (2, 2, 8, 8))
        return grid


model = Model()
139
model.eval()
M
Macrobull 已提交
140 141 142 143
theta = torch.rand((2, 2, 3))
grid = model(theta)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
144 145 146 147
export_onnx_with_validation(model, (theta, ),
                            prefix + str(idx), ['theta'], ['grid'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
148 149 150

######## example: conv2d_transpose ########

M
Macrobull 已提交
151

M
Macrobull 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.ConvTranspose2d(3, 8, 3)
        self.dropout = nn.Dropout2d()

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.dropout(y)
        return y


model = Model()
166
model.eval()
M
Macrobull 已提交
167 168 169 170
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
171 172 173 174
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
175 176 177

######## example: conv2d ########

M
Macrobull 已提交
178

M
Macrobull 已提交
179 180 181 182 183
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(3, 8, 3)
        self.batch_norm = nn.BatchNorm2d(8)
M
Macrobull 已提交
184
        self.pool = nn.AdaptiveAvgPool2d(1)
M
Macrobull 已提交
185 186 187 188 189 190 191 192 193 194

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.batch_norm(y)
        y = self.pool(y)
        return y


model = Model()
195
model.eval()
M
Macrobull 已提交
196 197 198 199
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
200 201 202 203
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

######### example: conv1d ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.batch_norm = nn.BatchNorm2d(3)
#
#    def forward(self, x):
#        y = x
#        y = self.batch_norm(y)
#        return y
#
#
#model = Model()
219
#model.eval()
M
Macrobull 已提交
220 221 222 223
#xb = torch.rand((2, 3, 4, 5))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
Macrobull 已提交
224 225 226 227
#export_onnx_with_validation(
#        model, [xb], prefix + str(idx),
#        ['x'], ['y'],
#        verbose=True, training=False)
M
Macrobull 已提交
228 229 230

######## example: empty ########

M
Macrobull 已提交
231

M
Macrobull 已提交
232 233 234 235 236 237 238 239 240
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        return x


model = Model()
241
model.eval()
M
Macrobull 已提交
242 243 244 245
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
246 247 248 249
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['y'], ['y'],
                            verbose=True,
                            training=False)