gen_some_samples.py 4.9 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7 8
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull

Not all ops in this file are supported by both Pytorch and ONNX
M
Macrobull 已提交
9
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle fluid
M
Macrobull 已提交
10 11 12 13 14 15 16 17 18

"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

M
Macrobull 已提交
19
from onnx2fluid.torch_export_helper import export_onnx_with_validation
M
Macrobull 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

idx = 0

######### example: RNN ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.rnn = nn.RNN(4, 6, 2)
#
#    def forward(self, x):
#        y = x
#        y, h = self.rnn(y)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3, 4))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
#export_onnx_with_validation(model, (xb, ), 't' + str(idx),
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######### example: random ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#
#    def forward(self, x):
#        y = torch.rand((2, 3)) # + torch.rand_like(xb)
#        y = y + torch.randn((2, 3)) # + torch.randn_like(xb)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
#export_onnx_with_validation(model, (xb, ), 't' + str(idx),
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: fc ########

M
Macrobull 已提交
68

M
Macrobull 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc = nn.Linear(3, 8)

    def forward(self, x):
        y = x
        y = self.fc(y)
        return y


model = Model()
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
85 86
export_onnx_with_validation(
    model, (xb, ), 't' + str(idx), ['x'], ['y'], verbose=True, training=False)
M
Macrobull 已提交
87 88 89

######## example: compare ########

M
Macrobull 已提交
90

M
Macrobull 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x0, x1):
        x0 = x0.clamp(-1, 1)
        a = torch.max(x0, x1) == x1
        b = x0 < x1
        c = x0 > x1
        return a, b, c


model = Model()
xb0 = torch.rand((2, 3))
xb1 = torch.rand((2, 3))
ya, yb, yc = model(xb0, xb1)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
109 110 111 112 113
export_onnx_with_validation(
    model, (xb0, xb1),
    't' + str(idx), ['x0', 'x1'], ['ya', 'yb', 'yc'],
    verbose=True,
    training=False)
M
Macrobull 已提交
114 115 116

######## example: affine_grid ########

M
Macrobull 已提交
117

M
Macrobull 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, theta):
        grid = F.affine_grid(theta, (2, 2, 8, 8))
        return grid


model = Model()
theta = torch.rand((2, 2, 3))
grid = model(theta)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
132 133 134 135 136
export_onnx_with_validation(
    model, (theta, ),
    't' + str(idx), ['theta'], ['grid'],
    verbose=True,
    training=False)
M
Macrobull 已提交
137 138 139

######## example: conv2d_transpose ########

M
Macrobull 已提交
140

M
Macrobull 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.ConvTranspose2d(3, 8, 3)
        self.dropout = nn.Dropout2d()

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.dropout(y)
        return y


model = Model()
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
159 160
export_onnx_with_validation(
    model, (xb, ), 't' + str(idx), ['x'], ['y'], verbose=True, training=False)
M
Macrobull 已提交
161 162 163

######## example: conv2d ########

M
Macrobull 已提交
164

M
Macrobull 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(3, 8, 3)
        self.batch_norm = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(2)

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.batch_norm(y)
        y = self.pool(y)
        return y


model = Model()
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
185 186
export_onnx_with_validation(
    model, (xb, ), 't' + str(idx), ['x'], ['y'], verbose=True, training=False)
M
Macrobull 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

######### example: conv1d ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.batch_norm = nn.BatchNorm2d(3)
#
#    def forward(self, x):
#        y = x
#        y = self.batch_norm(y)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3, 4, 5))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
#export_onnx_with_validation(model, (xb, ), 't' + str(idx),
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: empty ########

M
Macrobull 已提交
212

M
Macrobull 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        return x


model = Model()
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
226 227
export_onnx_with_validation(
    model, (xb, ), 't' + str(idx), ['y'], ['y'], verbose=True, training=False)