gen_some_samples.py 5.0 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7 8
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull

Not all ops in this file are supported by both Pytorch and ONNX
M
Macrobull 已提交
9
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle fluid
M
Macrobull 已提交
10 11 12 13 14 15 16 17 18

"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

M
Macrobull 已提交
19
from onnx2fluid.torch_export_helper import export_onnx_with_validation
M
Macrobull 已提交
20

M
Macrobull 已提交
21
prefix = 'sample_'
M
Macrobull 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
idx = 0

######### example: RNN ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.rnn = nn.RNN(4, 6, 2)
#
#    def forward(self, x):
#        y = x
#        y, h = self.rnn(y)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3, 4))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
Macrobull 已提交
42
#export_onnx_with_validation(model, (xb, ), prefix + str(idx),
M
Macrobull 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######### example: random ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#
#    def forward(self, x):
#        y = torch.rand((2, 3)) # + torch.rand_like(xb)
#        y = y + torch.randn((2, 3)) # + torch.randn_like(xb)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
Macrobull 已提交
63
#export_onnx_with_validation(model, (xb, ), prefix + str(idx),
M
Macrobull 已提交
64 65 66 67 68
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: fc ########

M
Macrobull 已提交
69

M
Macrobull 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc = nn.Linear(3, 8)

    def forward(self, x):
        y = x
        y = self.fc(y)
        return y


model = Model()
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
86
export_onnx_with_validation(
M
Macrobull 已提交
87 88 89 90
    model, (xb, ),
    prefix + str(idx), ['x'], ['y'],
    verbose=True,
    training=False)
M
Macrobull 已提交
91 92 93

######## example: compare ########

M
Macrobull 已提交
94

M
Macrobull 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x0, x1):
        x0 = x0.clamp(-1, 1)
        a = torch.max(x0, x1) == x1
        b = x0 < x1
        c = x0 > x1
        return a, b, c


model = Model()
xb0 = torch.rand((2, 3))
xb1 = torch.rand((2, 3))
ya, yb, yc = model(xb0, xb1)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
113 114
export_onnx_with_validation(
    model, (xb0, xb1),
M
Macrobull 已提交
115
    prefix + str(idx), ['x0', 'x1'], ['ya', 'yb', 'yc'],
M
Macrobull 已提交
116 117
    verbose=True,
    training=False)
M
Macrobull 已提交
118 119 120

######## example: affine_grid ########

M
Macrobull 已提交
121

M
Macrobull 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, theta):
        grid = F.affine_grid(theta, (2, 2, 8, 8))
        return grid


model = Model()
theta = torch.rand((2, 2, 3))
grid = model(theta)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
136 137
export_onnx_with_validation(
    model, (theta, ),
M
Macrobull 已提交
138
    prefix + str(idx), ['theta'], ['grid'],
M
Macrobull 已提交
139 140
    verbose=True,
    training=False)
M
Macrobull 已提交
141 142 143

######## example: conv2d_transpose ########

M
Macrobull 已提交
144

M
Macrobull 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.ConvTranspose2d(3, 8, 3)
        self.dropout = nn.Dropout2d()

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.dropout(y)
        return y


model = Model()
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
163
export_onnx_with_validation(
M
Macrobull 已提交
164 165 166 167
    model, (xb, ),
    prefix + str(idx), ['x'], ['y'],
    verbose=True,
    training=False)
M
Macrobull 已提交
168 169 170

######## example: conv2d ########

M
Macrobull 已提交
171

M
Macrobull 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(3, 8, 3)
        self.batch_norm = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(2)

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.batch_norm(y)
        y = self.pool(y)
        return y


model = Model()
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
192
export_onnx_with_validation(
M
Macrobull 已提交
193 194 195 196
    model, (xb, ),
    prefix + str(idx), ['x'], ['y'],
    verbose=True,
    training=False)
M
Macrobull 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

######### example: conv1d ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.batch_norm = nn.BatchNorm2d(3)
#
#    def forward(self, x):
#        y = x
#        y = self.batch_norm(y)
#        return y
#
#
#model = Model()
#xb = torch.rand((2, 3, 4, 5))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
Macrobull 已提交
216
#export_onnx_with_validation(model, (xb, ), prefix + str(idx),
M
Macrobull 已提交
217 218 219 220 221
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: empty ########

M
Macrobull 已提交
222

M
Macrobull 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        return x


model = Model()
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
Macrobull 已提交
236
export_onnx_with_validation(
M
Macrobull 已提交
237 238 239 240
    model, (xb, ),
    prefix + str(idx), ['y'], ['y'],
    verbose=True,
    training=False)