gen_some_samples.py 5.4 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull

M
fix doc  
Macrobull 已提交
8 9
Not all ops in this file are supported by both PyTorch and ONNX
This only demostrates the conversion/validation workflow from PyTorch to ONNX to Paddle fluid
M
Macrobull 已提交
10 11 12 13 14 15 16 17
"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

M
Macrobull 已提交
18
from onnx2fluid.torch_export_helper import export_onnx_with_validation
M
Macrobull 已提交
19

M
Macrobull 已提交
20
prefix = 'sample_'
M
Macrobull 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
idx = 0

######### example: RNN ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.rnn = nn.RNN(4, 6, 2)
#
#    def forward(self, x):
#        y = x
#        y, h = self.rnn(y)
#        return y
#
#
#model = Model()
37
#model.eval()
M
Macrobull 已提交
38 39 40 41
#xb = torch.rand((2, 3, 4))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
bugfix  
Macrobull 已提交
42
#export_onnx_with_validation(model, [xb], prefix + str(idx),
M
Macrobull 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######### example: random ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#
#    def forward(self, x):
#        y = torch.rand((2, 3)) # + torch.rand_like(xb)
#        y = y + torch.randn((2, 3)) # + torch.randn_like(xb)
#        return y
#
#
#model = Model()
59
#model.eval()
M
Macrobull 已提交
60 61 62 63
#xb = torch.rand((2, 3))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
bugfix  
Macrobull 已提交
64
#export_onnx_with_validation(model, [xb], prefix + str(idx),
M
Macrobull 已提交
65 66 67 68 69
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: fc ########

M
Macrobull 已提交
70

M
Macrobull 已提交
71 72 73 74 75 76 77 78 79 80 81 82
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc = nn.Linear(3, 8)

    def forward(self, x):
        y = x
        y = self.fc(y)
        return y


model = Model()
83
model.eval()
M
Macrobull 已提交
84 85 86 87
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
88 89 90 91
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
92 93 94

######## example: compare ########

M
Macrobull 已提交
95

M
Macrobull 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x0, x1):
        x0 = x0.clamp(-1, 1)
        a = torch.max(x0, x1) == x1
        b = x0 < x1
        c = x0 > x1
        return a, b, c


model = Model()
109
model.eval()
M
Macrobull 已提交
110 111 112 113 114
xb0 = torch.rand((2, 3))
xb1 = torch.rand((2, 3))
ya, yb, yc = model(xb0, xb1)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
115 116 117 118
export_onnx_with_validation(model, [xb0, xb1],
                            prefix + str(idx), ['x0', 'x1'], ['ya', 'yb', 'yc'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
119 120 121

######## example: affine_grid ########

M
Macrobull 已提交
122

M
Macrobull 已提交
123 124 125 126 127 128 129 130 131 132
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, theta):
        grid = F.affine_grid(theta, (2, 2, 8, 8))
        return grid


model = Model()
133
model.eval()
M
Macrobull 已提交
134 135 136 137
theta = torch.rand((2, 2, 3))
grid = model(theta)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
138 139 140 141
export_onnx_with_validation(model, (theta, ),
                            prefix + str(idx), ['theta'], ['grid'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
142 143 144

######## example: conv2d_transpose ########

M
Macrobull 已提交
145

M
Macrobull 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.ConvTranspose2d(3, 8, 3)
        self.dropout = nn.Dropout2d()

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.dropout(y)
        return y


model = Model()
160
model.eval()
M
Macrobull 已提交
161 162 163 164
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
165 166 167 168
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
169 170 171

######## example: conv2d ########

M
Macrobull 已提交
172

M
Macrobull 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(3, 8, 3)
        self.batch_norm = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(2)

    def forward(self, x):
        y = x
        y = self.conv(y)
        y = self.batch_norm(y)
        y = self.pool(y)
        return y


model = Model()
189
model.eval()
M
Macrobull 已提交
190 191 192 193
xb = torch.rand((2, 3, 4, 5))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
194 195 196 197
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['x'], ['y'],
                            verbose=True,
                            training=False)
M
Macrobull 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

######### example: conv1d ########
#
#class Model(nn.Module):
#    def __init__(self):
#        super(Model, self).__init__()
#        self.batch_norm = nn.BatchNorm2d(3)
#
#    def forward(self, x):
#        y = x
#        y = self.batch_norm(y)
#        return y
#
#
#model = Model()
213
#model.eval()
M
Macrobull 已提交
214 215 216 217
#xb = torch.rand((2, 3, 4, 5))
#yp = model(xb)
#idx += 1
#print('index: ', idx)
M
bugfix  
Macrobull 已提交
218
#export_onnx_with_validation(model, [xb], prefix + str(idx),
M
Macrobull 已提交
219 220 221 222 223
#                            ['x'], ['y'],
#                            verbose=True, training=False)

######## example: empty ########

M
Macrobull 已提交
224

M
Macrobull 已提交
225 226 227 228 229 230 231 232 233
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        return x


model = Model()
234
model.eval()
M
Macrobull 已提交
235 236 237 238
xb = torch.rand((2, 3))
yp = model(xb)
idx += 1
print('index: ', idx)
M
bugfix  
Macrobull 已提交
239 240 241 242
export_onnx_with_validation(model, [xb],
                            prefix + str(idx), ['y'], ['y'],
                            verbose=True,
                            training=False)