tf_op_mapper_nhwc.py 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
from x2paddle import gen_name
import traceback
M
mamingjie-China 已提交
21
import math
22 23 24 25 26 27 28 29 30
import inspect
import numpy
import sys


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
31 32
    if pad_size < 0:
        pad_size = 0
33 34 35 36 37 38 39 40 41 42 43 44 45
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
J
jiangjiajun@baidu.com 已提交
46
        'Sqrt': ['sqrt'],
47
        'swish_f32': ['swish'],
48
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
49
        'Softplus': ['softplus'],
50 51
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
52
        }],
M
mamingjie-China 已提交
53 54
        'Floor': ['floor'],
        'Erf': ['erf']
55 56 57
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun@baidu.com 已提交
58
        'AddV2': 'elementwise_add',
59 60 61
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
62
        'Minimum': 'elementwise_min',
M
mamingjie-China 已提交
63
        'LessEqual': 'less_equal',
J
jiangjiajun 已提交
64
        'GreaterEqual': 'greater_equal',
J
jiangjiajun 已提交
65 66
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
67 68 69 70 71 72 73 74 75
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
        self.omit_nodes = list()
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
76
        program.clear()
77 78 79

        not_placeholder = list()
        for name in self.graph.input_nodes:
M
mamingjie-China 已提交
80 81 82 83 84
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
85 86 87 88 89
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

J
jiangjiajun 已提交
90 91 92
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

93
        unsupported_ops = set()
94 95
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
96
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
J
jiangjiajun@baidu.com 已提交
111 112
                try:
                    func(node)
113
                except Exception as e:
J
jiangjiajun@baidu.com 已提交
114
                    unsupported_ops.add(op)
J
jiangjiajun 已提交
115
                    print("\n{}\n".format(traceback.format_exc()))
116 117 118
            else:
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
119
            print("\n========= {} OPs are not supported yet ===========".format(
120 121 122 123
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
124
        sys.stderr.write("\nDone!\n")
125 126 127 128

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
129
        input = self.graph.get_node(node.layer.input[0])
130 131 132 133 134 135
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
136

J
jiangjiajun 已提交
137 138 139 140 141
        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
142 143 144 145

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
146 147 148 149 150 151 152
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
153 154 155 156 157 158

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
159 160 161 162 163 164 165
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
166 167 168 169 170 171 172 173 174 175 176

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
186 187

    def Transpose(self, node):
J
jiangjiajun 已提交
188 189
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
190 191 192
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()

J
jiangjiajun 已提交
193 194 195 196 197
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
198

199
    def Fill(self, node):
M
update  
mamingjie-China 已提交
200 201
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
M
update  
mamingjie-China 已提交
202 203
        inputs = dict()
        attr = dict()
204
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
M
update  
mamingjie-China 已提交
205 206 207 208 209 210
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
211

J
jiangjiajun 已提交
212 213
        program.add_layer(
            "fluid.layers.fill_constant",
M
update  
mamingjie-China 已提交
214
            inputs=inputs,
J
jiangjiajun 已提交
215
            outputs=[node.name],
M
update  
mamingjie-China 已提交
216
            **attr)
217 218

    def DepthToSpace(self, node):
M
update  
mamingjie-China 已提交
219
        input = self.graph.get_node(node.layer.input[0])
220 221 222

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
M
update  
mamingjie-China 已提交
223 224 225 226
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
227

J
jiangjiajun 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
M
update  
mamingjie-China 已提交
261 262
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
J
jiangjiajun 已提交
263 264
            outputs=[node.name],
            upscale_factor=block_size)
265 266

        if data_format == "NHWC":
J
jiangjiajun 已提交
267 268 269 270 271
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
272

273
    def MaxPool(self, node):
M
update  
mamingjie-China 已提交
274
        input = self.graph.get_node(node.layer.input[0])
275 276 277 278 279 280

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
281 282 283 284 285 286 287 288
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
289 290
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
308 309

    def Conv2D(self, node):
J
jiangjiajun 已提交
310 311
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
312 313 314 315 316 317

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
M
mamingjie-China 已提交
318 319
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
M
update  
mamingjie-China 已提交
320 321
        else:
            n, c, h, w = input.out_shapes[0]
322

J
jiangjiajun@baidu.com 已提交
323 324
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
M
mamingjie-China 已提交
325
            kernel_weight_name = kernel.name.replace('/', '_')
326 327 328
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
M
mamingjie-China 已提交
329 330
                kernel_weight_name = "{}_{}_kernel".format(node.name,
                                                           kernel.name)
331
            else:
M
mamingjie-China 已提交
332
                kernel_weight_name = kernel.name.replace('/', '_')
J
jiangjiajun 已提交
333 334
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
335

J
jiangjiajun 已提交
336 337
        input_name = input.name
        if data_format == "NHWC":
338 339
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
340 341 342 343 344 345 346 347
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

M
mamingjie-China 已提交
348 349 350 351 352 353 354 355 356 357
        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

J
jiangjiajun 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
376 377

    def BiasAdd(self, node):
J
jiangjiajun 已提交
378 379 380 381 382 383 384
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
385 386

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
387 388 389 390 391
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
392 393 394 395 396 397 398
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

J
jiangjiajun 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)
419

J
jiangjiajun 已提交
420 421 422 423 424 425
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
426

J
jiangjiajun 已提交
427 428 429 430 431 432
    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")
433

J
jiangjiajun 已提交
434 435 436 437 438 439
        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)
440 441

    def Reshape(self, node):
J
jiangjiajun 已提交
442 443
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])
444
        if param.layer_type == "Const":
445
            shape = param.value.tolist()
J
jiangjiajun 已提交
446 447 448 449 450
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name},
                outputs=[node.name],
                shape=shape)
451
        else:
J
jiangjiajun 已提交
452 453 454 455 456
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name,
                        "shape": param.name},
                outputs=[node.name])
457 458 459 460
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
J
jiangjiajun 已提交
461 462 463 464 465
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())
466 467

    def Pad(self, node):
J
jiangjiajun 已提交
468 469
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
470 471 472 473
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
J
jiangjiajun 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
492 493
                return

J
jiangjiajun 已提交
494 495 496 497 498
        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)
499

J
jiangjiajun 已提交
500 501 502 503 504 505 506 507
    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)
508

J
jiangjiajun 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input.name},
            outputs=[node.name])
524

J
jiangjiajun 已提交
525 526 527 528 529 530 531 532 533 534
    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
535 536

    def MatMul(self, node):
J
jiangjiajun 已提交
537 538
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
539 540
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
M
mamingjie-China 已提交
541 542 543 544
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
J
jiangjiajun 已提交
545 546 547 548 549 550 551 552
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

M
mamingjie-China 已提交
553 554 555 556 557 558
    def BatchMatMul(self, node):
        return self.MatMul(node)

    def BatchMatMulV2(self, node):
        return self.MatMul(node)

J
jiangjiajun 已提交
559 560 561 562 563 564 565 566 567 568 569
    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
570

J
jiangjiajun 已提交
571 572
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
M
mamingjie-China 已提交
573

J
jiangjiajun 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)
M
mamingjie-China 已提交
599

J
jiangjiajun 已提交
600 601 602 603 604 605 606 607
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
M
update  
mamingjie-China 已提交
608
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)

    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
656
        axis = axis.value
J
jiangjiajun 已提交
657 658 659 660 661 662 663
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)
664 665

    def StridedSlice(self, node):
J
jiangjiajun 已提交
666 667 668 669
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

J
jiangjiajun 已提交
721 722 723 724 725 726 727
        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
728
        if len(new_axes) > 0:
J
jiangjiajun 已提交
729 730
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
731
                inputs={"input": node.name},
J
jiangjiajun 已提交
732 733
                outputs=[node.name],
                axes=new_axes)
734 735 736 737
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
J
jiangjiajun 已提交
738 739
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
740
                    inputs={"input": node.name},
J
jiangjiajun 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
                    outputs=[node.name],
                    axes=new_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
759 760

    def Slice(self, node):
J
jiangjiajun 已提交
761 762 763 764 765 766
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
767 768
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
769
            attrs['offsets'] = begin
770
        else:
M
mamingjie-China 已提交
771 772 773 774 775 776 777 778 779 780
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             program.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
            begin = self.decoder.infer_tensor(begin).tolist()
            attrs['offsets'] = begin
781
        if size.layer_type == "Const":
782
            size = size.value.tolist()
J
jiangjiajun 已提交
783
            attrs['shape'] = size
784
        else:
785
            shape = size.out_shapes[0]
J
jiangjiajun 已提交
786 787 788 789 790 791 792 793 794 795 796 797
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
798

J
jiangjiajun 已提交
799 800 801 802 803 804
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
805

J
jiangjiajun 已提交
806 807 808 809 810 811 812 813 814 815 816 817
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
818

J
jiangjiajun 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832
        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
833

J
jiangjiajun 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
851
        else:
J
jiangjiajun 已提交
852 853 854 855 856 857 858 859
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
860

J
jiangjiajun 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874
        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
875

J
jiangjiajun 已提交
876 877 878 879 880 881
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
882

J
jiangjiajun 已提交
883 884 885 886 887 888 889 890
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))
891

J
jiangjiajun 已提交
892 893 894
    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
895 896 897 898
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

J
jiangjiajun 已提交
899 900 901 902 903 904
        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
905

J
jiangjiajun 已提交
906 907 908
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
909 910 911
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
J
jiangjiajun 已提交
912 913 914 915 916 917
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
918 919

    def RandomUniform(self, node):
M
update  
mamingjie-China 已提交
920
        shape = self.graph.get_node(node.layer.input[0])
921 922
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
J
jiangjiajun 已提交
923 924 925 926 927 928 929
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
930
        else:
J
jiangjiajun 已提交
931 932 933 934 935 936
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
M
mamingjie-China 已提交
937

J
jiangjiajun 已提交
938 939 940 941 942 943 944 945 946
    def Conv2DBackpropInput(self, node):
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
M
mamingjie-China 已提交
947
        else:
J
jiangjiajun 已提交
948 949
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])
M
mamingjie-China 已提交
950

J
jiangjiajun 已提交
951 952 953 954 955 956 957 958 959 960 961
        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
M
mamingjie-China 已提交
962

J
jiangjiajun 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
M
mamingjie-China 已提交
998 999

    def Tile(self, node):
M
update  
mamingjie-China 已提交
1000 1001
        input = self.graph.get_node(node.layer.input[0])
        expand_times = self.graph.get_node(node.layer.input[1])
M
mamingjie-China 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name

        program.add_layer(
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def Range(self, node):
M
update  
mamingjie-China 已提交
1017 1018 1019
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
M
mamingjie-China 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        inputs = dict()
        attr = dict()

        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
            inputs["start"] = start.name
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        attr["dtype"] = string(node.dtype)

        program.add_layer(
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)
M
update  
mamingjie-China 已提交
1042 1043

    def SquaredDifference(self, node):
M
update  
mamingjie-China 已提交
1044 1045
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
M
update  
mamingjie-China 已提交
1046 1047 1048 1049 1050 1051
        inputs = {"x": x.name, "y": y.name}
        program.add_layer(
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
        inputs = {"x": node.name, "y": node.name}
        program.add_layer(
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])
M
mamingjie-China 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

    def OneHot(self, node):
        input = self.graph.get_node(node.layer.input[0])
        depth = self.graph.get_node(node.layer.input[1])
        on_value = self.graph.get_node(node.layer.input[2])
        off_value = self.graph.get_node(node.layer.input[3])
        assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot'
        assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot'
        assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot'

        attr = {'depth': depth.value}
        on_value = on_value.value
        off_value = off_value.value
        assert math.fabs(on_value -
                         1.0) < 1e-06, "on_value should be 1 in OneHot"
        assert math.fabs(off_value -
                         0.0) < 1e-06, "off_value should be 0 in OneHot"

        program.add_layer(
            "fluid.one_hot",
            inputs={"input": input.name},
            outputs=[node.name],
            depth=depth.value)

    def Pow(self, node):
        x = self.graph.get_node(node.layer.input[0])
        factor = self.graph.get_node(node.layer.input[1])
        inputs = {"x": x.name}
        attr = dict()
        if factor.layer_type == 'Const':
            attr["factor"] = factor.value.tolist()
        else:
            inputs["factor"] = factor.name
        program.add_layer(
            "fluid.layers.pow", inputs=inputs, outputs=[node.name], **attr)

    def All(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        attr = dict()
        attr["dim"] = reduce_idx.value.tolist()
        attr["keep_dim"] = node.get_attr("keep_dims")

        program.add_layer(
            "fluid.layers.reduce_all",
            inputs={"input": input.name},
            outputs=[node.name],
            **attr)

    def GatherV2(self, node):
        embeddings = self.graph.get_node(node.layer.input[0])
        index = self.graph.get_node(node.layer.input[1])
        axis = self.graph.get_node(node.layer.input[2])
        assert axis.layer_type == 'Const', "Only support Const parameter[axis]"
        axis = axis.value.tolist()
        assert axis == 0, "Only support axis=0 in GatherV2 OP"
        index_name = index.name
        if len(index.out_shapes[0]) != 1:
            reshape_name = gen_name("gather", "reshape")
            index_name = reshape_name
            program.add_layer(
                "fluid.layers.reshape",
                inputs={"x": index.name},
                outputs=[reshape_name],
                shape=[-1])
        inputs = {'input': embeddings.name, 'index': index_name}
        program.add_layer(
            "fluid.layers.gather",
            inputs=inputs,
            outputs=[node.name],
            overwrite=False)

    def ExpandDims(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"input": x.name}
        attr = dict()
        if y.layer_type == 'Const':
            dim = y.value.tolist()
            if not isinstance(dim, list):
                dim = [dim]
            attr['axes'] = dim
        else:
            inputs['axes'] = y.name
        program.add_layer(
            "fluid.layers.unsqueeze",
            inputs=inputs,
            outputs=[node.name],
            **attr)