tf_op_mapper_nhwc.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
from x2paddle import gen_name
import traceback
M
mamingjie-China 已提交
21
import math
22 23 24 25 26 27 28 29 30
import inspect
import numpy
import sys


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
31 32
    if pad_size < 0:
        pad_size = 0
33 34 35 36 37 38 39 40 41 42 43 44 45
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
J
jiangjiajun@baidu.com 已提交
46
        'Sqrt': ['sqrt'],
47
        'swish_f32': ['swish'],
48
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
49
        'Softplus': ['softplus'],
50 51
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
52
        }],
M
mamingjie-China 已提交
53 54
        'Floor': ['floor'],
        'Erf': ['erf']
55 56 57
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun@baidu.com 已提交
58
        'AddV2': 'elementwise_add',
59 60 61
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
62
        'Minimum': 'elementwise_min',
M
mamingjie-China 已提交
63
        'LessEqual': 'less_equal',
J
jiangjiajun 已提交
64
        'GreaterEqual': 'greater_equal',
J
jiangjiajun 已提交
65 66
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
67 68 69 70 71 72 73 74 75
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
        self.omit_nodes = list()
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
76
        program.clear()
77 78 79

        not_placeholder = list()
        for name in self.graph.input_nodes:
M
mamingjie-China 已提交
80 81 82 83 84
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
85 86 87 88 89
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

J
jiangjiajun 已提交
90 91 92
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

93
        unsupported_ops = set()
94 95
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
96
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
J
jiangjiajun@baidu.com 已提交
111 112
                try:
                    func(node)
113
                except Exception as e:
J
jiangjiajun@baidu.com 已提交
114
                    unsupported_ops.add(op)
J
jiangjiajun 已提交
115
                    print("\n{}\n".format(traceback.format_exc()))
116 117 118
            else:
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
119
            print("\n========= {} OPs are not supported yet ===========".format(
120 121 122 123
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
124
        sys.stderr.write("\nDone!\n")
125 126 127 128

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
129
        input = self.graph.get_node(node.layer.input[0])
130 131 132 133 134 135
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
136

J
jiangjiajun 已提交
137 138 139 140 141
        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
142 143 144 145

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
146 147 148 149 150 151 152
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
153 154 155 156 157 158

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
159 160 161 162 163 164 165
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
166 167 168 169 170 171 172 173 174 175 176

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
186 187

    def Transpose(self, node):
J
jiangjiajun 已提交
188 189
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
190 191 192
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()

J
jiangjiajun 已提交
193 194 195 196 197
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
198

199
    def Fill(self, node):
M
update  
mamingjie-China 已提交
200 201
        dims = self.graph.get_node(node.layer.input[0])
        input_value = self.graph.get_node(node.layer.input[1])
M
update  
mamingjie-China 已提交
202 203
        inputs = dict()
        attr = dict()
204
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"
M
update  
mamingjie-China 已提交
205 206 207 208 209 210
        if dims.layer_type == "Const":
            attr["shape"] = dims.value.tolist()
        else:
            inputs["shape"] = dims.name
        attr["dtype"] = string(input_value.dtype)
        attr["value"] = input_value.value
211

J
jiangjiajun 已提交
212 213
        program.add_layer(
            "fluid.layers.fill_constant",
M
update  
mamingjie-China 已提交
214
            inputs=inputs,
J
jiangjiajun 已提交
215
            outputs=[node.name],
M
update  
mamingjie-China 已提交
216
            **attr)
217 218

    def DepthToSpace(self, node):
M
update  
mamingjie-China 已提交
219
        input = self.graph.get_node(node.layer.input[0])
220 221 222

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
M
update  
mamingjie-China 已提交
223 224 225 226
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
        else:
            n, c, h, w = input.out_shapes[0]
227

J
jiangjiajun 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
M
update  
mamingjie-China 已提交
261 262
            kernel="fluid.layers.pixel_shuffle",
            inputs={"x": reshape_name},
J
jiangjiajun 已提交
263 264
            outputs=[node.name],
            upscale_factor=block_size)
265 266

        if data_format == "NHWC":
J
jiangjiajun 已提交
267 268 269 270 271
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
272

273
    def MaxPool(self, node):
M
update  
mamingjie-China 已提交
274
        input = self.graph.get_node(node.layer.input[0])
275 276 277 278 279 280

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
281 282 283 284 285 286 287 288
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
289 290
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
308 309

    def Conv2D(self, node):
J
jiangjiajun 已提交
310 311
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
312 313 314 315 316 317

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
M
mamingjie-China 已提交
318 319
        if data_format == "NHWC":
            n, h, w, c = input.out_shapes[0]
M
update  
mamingjie-China 已提交
320 321
        else:
            n, c, h, w = input.out_shapes[0]
322

J
jiangjiajun@baidu.com 已提交
323 324
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
325 326 327 328 329 330 331 332
            kernel_weight_name = kernel.layer_name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.layer_name,
                                                           kernel.layer_name)
            else:
                kernel_weight_name = kernel.layer_name.replace('/', '_')
J
jiangjiajun 已提交
333 334
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
335

J
jiangjiajun 已提交
336 337
        input_name = input.name
        if data_format == "NHWC":
338 339
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
340 341 342 343 344 345 346 347
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

M
mamingjie-China 已提交
348 349 350 351 352 353 354 355 356 357
        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

J
jiangjiajun 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
376 377

    def BiasAdd(self, node):
J
jiangjiajun 已提交
378 379 380 381 382 383 384
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
385 386

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
387 388 389 390 391
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
392 393 394 395 396 397 398
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

J
jiangjiajun 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)
419

J
jiangjiajun 已提交
420 421 422 423 424 425
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
426

J
jiangjiajun 已提交
427 428 429 430 431 432
    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")
433

J
jiangjiajun 已提交
434 435 436 437 438 439
        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)
440 441

    def Reshape(self, node):
J
jiangjiajun 已提交
442 443
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])
444
        if param.layer_type == "Const":
445
            shape = param.value.tolist()
J
jiangjiajun 已提交
446 447 448 449 450
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name},
                outputs=[node.name],
                shape=shape)
451
        else:
J
jiangjiajun 已提交
452 453 454 455 456
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name,
                        "shape": param.name},
                outputs=[node.name])
457 458 459 460
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
J
jiangjiajun 已提交
461 462 463 464 465
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())
466 467

    def Pad(self, node):
J
jiangjiajun 已提交
468 469
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
470 471 472 473
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
J
jiangjiajun 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
492 493
                return

J
jiangjiajun 已提交
494 495 496 497 498
        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)
499

J
jiangjiajun 已提交
500 501 502 503 504 505 506 507
    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)
508

J
jiangjiajun 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input.name},
            outputs=[node.name])
524

J
jiangjiajun 已提交
525 526 527 528 529 530 531 532 533 534
    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
535 536

    def MatMul(self, node):
J
jiangjiajun 已提交
537 538
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
539 540
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
M
mamingjie-China 已提交
541 542 543 544
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
J
jiangjiajun 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
564

J
jiangjiajun 已提交
565 566
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
M
mamingjie-China 已提交
567

J
jiangjiajun 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)
M
mamingjie-China 已提交
593

J
jiangjiajun 已提交
594 595 596 597 598 599 600 601
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
M
update  
mamingjie-China 已提交
602
        input = self.graph.get_node(node.layer.input[0])
J
jiangjiajun 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)

    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
650
        axis = axis.value
J
jiangjiajun 已提交
651 652 653 654 655 656 657
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)
658 659

    def StridedSlice(self, node):
J
jiangjiajun 已提交
660 661 662 663
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

J
jiangjiajun 已提交
715 716 717 718 719 720 721
        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
722
        if len(new_axes) > 0:
J
jiangjiajun 已提交
723 724
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
725
                inputs={"input": node.name},
J
jiangjiajun 已提交
726 727
                outputs=[node.name],
                axes=new_axes)
728 729 730 731
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
J
jiangjiajun 已提交
732 733
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
734
                    inputs={"input": node.name},
J
jiangjiajun 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                    outputs=[node.name],
                    axes=new_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
753 754

    def Slice(self, node):
J
jiangjiajun 已提交
755 756 757 758 759 760
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
761 762
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
763
            attrs['offsets'] = begin
764
        else:
M
mamingjie-China 已提交
765 766 767 768 769 770 771 772 773 774
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             program.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
            begin = self.decoder.infer_tensor(begin).tolist()
            attrs['offsets'] = begin
775
        if size.layer_type == "Const":
776
            size = size.value.tolist()
J
jiangjiajun 已提交
777
            attrs['shape'] = size
778
        else:
779
            shape = size.out_shapes[0]
J
jiangjiajun 已提交
780 781 782 783 784 785 786 787 788 789 790 791
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
792

J
jiangjiajun 已提交
793 794 795 796 797 798
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
799

J
jiangjiajun 已提交
800 801 802 803 804 805 806 807 808 809 810 811
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
812

J
jiangjiajun 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826
        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
827

J
jiangjiajun 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
845
        else:
J
jiangjiajun 已提交
846 847 848 849 850 851 852 853
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
854

J
jiangjiajun 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868
        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
869

J
jiangjiajun 已提交
870 871 872 873 874 875
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
876

J
jiangjiajun 已提交
877 878 879 880 881 882 883 884
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))
885

J
jiangjiajun 已提交
886 887 888
    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
889 890 891 892
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

J
jiangjiajun 已提交
893 894 895 896 897 898
        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
899

J
jiangjiajun 已提交
900 901 902
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
903 904 905
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
J
jiangjiajun 已提交
906 907 908 909 910 911
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
912 913

    def RandomUniform(self, node):
M
update  
mamingjie-China 已提交
914
        shape = self.graph.get_node(node.layer.input[0])
915 916
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
J
jiangjiajun 已提交
917 918 919 920 921 922 923
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
924
        else:
J
jiangjiajun 已提交
925 926 927 928 929 930
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
M
mamingjie-China 已提交
931

J
jiangjiajun 已提交
932 933 934 935 936 937 938 939 940
    def Conv2DBackpropInput(self, node):
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
M
mamingjie-China 已提交
941
        else:
J
jiangjiajun 已提交
942 943
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])
M
mamingjie-China 已提交
944

J
jiangjiajun 已提交
945 946 947 948 949 950 951 952 953 954 955
        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
M
mamingjie-China 已提交
956

J
jiangjiajun 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
M
mamingjie-China 已提交
992 993

    def Tile(self, node):
M
update  
mamingjie-China 已提交
994 995
        input = self.graph.get_node(node.layer.input[0])
        expand_times = self.graph.get_node(node.layer.input[1])
M
mamingjie-China 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name

        program.add_layer(
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def Range(self, node):
M
update  
mamingjie-China 已提交
1011 1012 1013
        start = self.graph.get_node(node.layer.input[0])
        limit = self.graph.get_node(node.layer.input[1])
        delta = self.graph.get_node(node.layer.input[2])
M
mamingjie-China 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        inputs = dict()
        attr = dict()

        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
            inputs["start"] = start.name
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        attr["dtype"] = string(node.dtype)

        program.add_layer(
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)
M
update  
mamingjie-China 已提交
1036 1037

    def SquaredDifference(self, node):
M
update  
mamingjie-China 已提交
1038 1039
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
M
update  
mamingjie-China 已提交
1040 1041 1042 1043 1044 1045
        inputs = {"x": x.name, "y": y.name}
        program.add_layer(
            "fluid.layers.elementwise_sub", inputs=inputs, outputs=[node.name])
        inputs = {"x": node.name, "y": node.name}
        program.add_layer(
            "fluid.layers.elementwise_mul", inputs=inputs, outputs=[node.name])