tf_op_mapper_nhwc.py 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
from x2paddle import gen_name
import traceback
M
mamingjie-China 已提交
21
import math
22 23 24 25 26 27 28 29 30
import inspect
import numpy
import sys


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
31 32
    if pad_size < 0:
        pad_size = 0
33 34 35 36 37 38 39 40 41 42 43 44 45
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
J
jiangjiajun@baidu.com 已提交
46
        'Sqrt': ['sqrt'],
47
        'swish_f32': ['swish'],
48
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
49
        'Softplus': ['softplus'],
50 51
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
52
        }],
M
mamingjie-China 已提交
53 54
        'Floor': ['floor'],
        'Erf': ['erf']
55 56 57
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun@baidu.com 已提交
58
        'AddV2': 'elementwise_add',
59 60 61
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
62
        'Minimum': 'elementwise_min',
M
mamingjie-China 已提交
63
        'LessEqual': 'less_equal',
J
jiangjiajun 已提交
64
        'GreaterEqual': 'greater_equal',
J
jiangjiajun 已提交
65 66
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
67 68 69 70 71 72 73 74 75
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
        self.omit_nodes = list()
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
76
        program.clear()
77 78 79

        not_placeholder = list()
        for name in self.graph.input_nodes:
M
mamingjie-China 已提交
80 81 82 83 84
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
85 86 87 88 89
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

J
jiangjiajun 已提交
90 91 92
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

93
        unsupported_ops = set()
94 95
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
96
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
J
jiangjiajun@baidu.com 已提交
111 112
                try:
                    func(node)
113
                except Exception as e:
J
jiangjiajun@baidu.com 已提交
114
                    unsupported_ops.add(op)
J
jiangjiajun 已提交
115
                    print("\n{}\n".format(traceback.format_exc()))
116 117 118
            else:
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
119
            print("\n========= {} OPs are not supported yet ===========".format(
120 121 122 123
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
124
        sys.stderr.write("\nDone!\n")
125 126 127 128

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
129
        input = self.graph.get_node(node.layer.input[0])
130 131 132 133 134 135
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
136

J
jiangjiajun 已提交
137 138 139 140 141
        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
142 143 144 145

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
146 147 148 149 150 151 152
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
153 154 155 156 157 158

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
159 160 161 162 163 164 165
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
166 167 168 169 170 171 172 173 174 175 176

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
186 187

    def Transpose(self, node):
J
jiangjiajun 已提交
188 189
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
190 191 192
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()

J
jiangjiajun 已提交
193 194 195 196 197
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
198

199 200 201 202 203 204 205
    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0], copy=True)
        input_value = self.graph.get_node(node.layer.input[1], copy=True)
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"

        input_value = input_value.value
        input_dtype = string(input_value.dtype)
J
jiangjiajun 已提交
206 207 208 209 210 211 212
        program.add_layer(
            "fluid.layers.fill_constant",
            inputs={},
            outputs=[node.name],
            shape=dims,
            dtype=string(input_dtype),
            value=input_value)
213 214 215 216 217 218 219 220

    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        n, h, w, c = input.out_shapes[0]

J
jiangjiajun 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
            kernel="fluid.layers.pixed_shuffle",
            inputs={"input": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)
258 259

        if data_format == "NHWC":
J
jiangjiajun 已提交
260 261 262 263 264
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
265

266 267 268 269 270 271 272 273
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
274 275 276 277 278 279 280 281
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
282 283
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
301 302

    def Conv2D(self, node):
J
jiangjiajun 已提交
303 304
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
305 306 307 308 309 310

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
M
mamingjie-China 已提交
311 312 313 314
        if data_format == "NHWC":
            n, c, h, w = input.out_shapes[0]
        else:
            n, h, w, c = input.out_shapes[0]
315

J
jiangjiajun@baidu.com 已提交
316 317
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
318 319 320 321 322 323 324 325
            kernel_weight_name = kernel.layer_name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.layer_name,
                                                           kernel.layer_name)
            else:
                kernel_weight_name = kernel.layer_name.replace('/', '_')
J
jiangjiajun 已提交
326 327
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
328

J
jiangjiajun 已提交
329 330
        input_name = input.name
        if data_format == "NHWC":
331 332
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
333 334 335 336 337 338 339 340
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

M
mamingjie-China 已提交
341 342 343 344 345 346 347 348 349 350
        if c == -1:
            attr = {"shape": [0, k_size[2], 0, 0]}
            node.fluid_code.add_layer(
                "reshape", inputs=input, output=input, param_attr=attr)
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input_name},
                outputs=[input_name],
                shape=[0, k_size[2], 0, 0])

J
jiangjiajun 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
369 370

    def BiasAdd(self, node):
J
jiangjiajun 已提交
371 372 373 374 375 376 377
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
378 379

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
380 381 382 383 384
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
385 386 387 388 389 390 391
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

J
jiangjiajun 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)
412

J
jiangjiajun 已提交
413 414 415 416 417 418
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
419

J
jiangjiajun 已提交
420 421 422 423 424 425
    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")
426

J
jiangjiajun 已提交
427 428 429 430 431 432
        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)
433 434

    def Reshape(self, node):
J
jiangjiajun 已提交
435 436
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])
437
        if param.layer_type == "Const":
438
            shape = param.value.tolist()
J
jiangjiajun 已提交
439 440 441 442 443
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name},
                outputs=[node.name],
                shape=shape)
444
        else:
J
jiangjiajun 已提交
445 446 447 448 449
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name,
                        "shape": param.name},
                outputs=[node.name])
450 451 452 453
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
J
jiangjiajun 已提交
454 455 456 457 458
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())
459 460

    def Pad(self, node):
J
jiangjiajun 已提交
461 462
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
463 464 465 466
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
J
jiangjiajun 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
485 486
                return

J
jiangjiajun 已提交
487 488 489 490 491
        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)
492

J
jiangjiajun 已提交
493 494 495 496 497 498 499 500
    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)
501

J
jiangjiajun 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input.name},
            outputs=[node.name])
517

J
jiangjiajun 已提交
518 519 520 521 522 523 524 525 526 527
    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
528 529

    def MatMul(self, node):
J
jiangjiajun 已提交
530 531
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
532 533
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
M
mamingjie-China 已提交
534 535 536 537
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
J
jiangjiajun 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
557

J
jiangjiajun 已提交
558 559
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
M
mamingjie-China 已提交
560

J
jiangjiajun 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)
M
mamingjie-China 已提交
586

J
jiangjiajun 已提交
587 588 589 590 591 592 593 594
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
595
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)

    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
643
        axis = axis.value
J
jiangjiajun 已提交
644 645 646 647 648 649 650
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)
651 652

    def StridedSlice(self, node):
J
jiangjiajun 已提交
653 654 655 656
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

J
jiangjiajun 已提交
708 709 710 711 712 713 714
        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
715
        if len(new_axes) > 0:
J
jiangjiajun 已提交
716 717
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
718
                inputs={"input": node.name},
J
jiangjiajun 已提交
719 720
                outputs=[node.name],
                axes=new_axes)
721 722 723 724
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
J
jiangjiajun 已提交
725 726
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
M
mamingjie-China 已提交
727
                    inputs={"input": node.name},
J
jiangjiajun 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                    outputs=[node.name],
                    axes=new_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
746 747

    def Slice(self, node):
J
jiangjiajun 已提交
748 749 750 751 752 753
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
754 755
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
756
            attrs['offsets'] = begin
757
        else:
M
mamingjie-China 已提交
758 759 760 761 762 763 764 765 766 767
            #             shape = begin.out_shapes[0]
            #             reshape_name = gen_name("slice", "reshape")
            #             program.add_layer(
            #                 kernel="fluid.layers.reshape",
            #                 inputs={"x": begin.name},
            #                 outputs=[reshape_name],
            #                 shape=shape)
            #             inputs['offsets'] = reshape_name
            begin = self.decoder.infer_tensor(begin).tolist()
            attrs['offsets'] = begin
768
        if size.layer_type == "Const":
769
            size = size.value.tolist()
J
jiangjiajun 已提交
770
            attrs['shape'] = size
771
        else:
772
            shape = size.out_shapes[0]
J
jiangjiajun 已提交
773 774 775 776 777 778 779 780 781 782 783 784
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
785

J
jiangjiajun 已提交
786 787 788 789 790 791
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
792

J
jiangjiajun 已提交
793 794 795 796 797 798 799 800 801 802 803 804
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
805

J
jiangjiajun 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819
        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
820

J
jiangjiajun 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
838
        else:
J
jiangjiajun 已提交
839 840 841 842 843 844 845 846
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
847

J
jiangjiajun 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861
        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
862

J
jiangjiajun 已提交
863 864 865 866 867 868
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
869

J
jiangjiajun 已提交
870 871 872 873 874 875 876 877
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))
878

J
jiangjiajun 已提交
879 880 881
    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
882 883 884 885
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

J
jiangjiajun 已提交
886 887 888 889 890 891
        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
892

J
jiangjiajun 已提交
893 894 895
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
896 897 898
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
J
jiangjiajun 已提交
899 900 901 902 903 904
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
905 906 907 908 909

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
J
jiangjiajun 已提交
910 911 912 913 914 915 916
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
917
        else:
J
jiangjiajun 已提交
918 919 920 921 922 923
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
M
mamingjie-China 已提交
924

J
jiangjiajun 已提交
925 926 927 928 929 930 931 932 933
    def Conv2DBackpropInput(self, node):
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
M
mamingjie-China 已提交
934
        else:
J
jiangjiajun 已提交
935 936
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])
M
mamingjie-China 已提交
937

J
jiangjiajun 已提交
938 939 940 941 942 943 944 945 946 947 948
        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
M
mamingjie-China 已提交
949

J
jiangjiajun 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
M
mamingjie-China 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": input.name}
        attr = dict()
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
            attr["expand_times"] = expand_times
        else:
            inputs["expand_times"] = expand_times.name

        program.add_layer(
            kernel="fluid.layers.expand",
            inputs=inputs,
            outputs=[node.name],
            **attr)

    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
        inputs = dict()
        attr = dict()

        if start.layer_type == "Const":
            attr["start"] = start.value
        else:
            inputs["start"] = start.name
        if limit.layer_type == "Const":
            attr["end"] = limit.value
        else:
            inputs["end"] = limit.name
        if delta.layer_type == "Const":
            attr["step"] = delta.value
        else:
            inputs["step"] = delta.name
        attr["dtype"] = string(node.dtype)

        program.add_layer(
            kernel="fluid.layers.range",
            inputs=inputs,
            outputs=[node.name],
            **attr)