tf_op_mapper_nhwc.py 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19 20
from x2paddle import program
from x2paddle import gen_name
import traceback
M
mamingjie-China 已提交
21
import math
22 23 24 25 26 27 28 29 30
import inspect
import numpy
import sys


# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
31 32
    if pad_size < 0:
        pad_size = 0
33 34 35 36 37 38 39 40 41 42 43 44 45
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


class TFOpMapperNHWC(OpMapper):
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
        'Rsqrt': ['rsqrt'],
J
jiangjiajun@baidu.com 已提交
46
        'Sqrt': ['sqrt'],
47
        'swish_f32': ['swish'],
48
        'Tanh': ['tanh'],
J
jiangjiajun 已提交
49
        'Softplus': ['softplus'],
50 51
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
52
        }],
M
mamingjie-China 已提交
53 54
        'Floor': ['floor'],
        'Erf': ['erf']
55 56 57
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
J
jiangjiajun@baidu.com 已提交
58
        'AddV2': 'elementwise_add',
59 60 61
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
62
        'Minimum': 'elementwise_min',
M
mamingjie-China 已提交
63
        'LessEqual': 'less_equal',
J
jiangjiajun 已提交
64
        'GreaterEqual': 'greater_equal',
J
jiangjiajun 已提交
65 66
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
67 68 69 70 71 72 73 74 75
    }

    def __init__(self, decoder):
        super(TFOpMapperNHWC, self).__init__()
        self.decoder = decoder
        self.graph = decoder.tf_graph
        self.weights = dict()
        self.omit_nodes = list()
        self.used_custom_layers = dict()
J
jiangjiajun 已提交
76
        program.clear()
77 78 79

        not_placeholder = list()
        for name in self.graph.input_nodes:
M
mamingjie-China 已提交
80 81 82 83 84
            if self.graph.get_node(
                    name).layer_type != "Placeholder" and self.graph.get_node(
                        name
                    ).layer_type != "OneShotIterator" and self.graph.get_node(
                        name).layer_type != "IteratorV2":
85 86 87 88 89
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]

J
jiangjiajun 已提交
90 91 92
        program.inputs = self.graph.input_nodes
        program.outputs = self.graph.output_nodes

93
        unsupported_ops = set()
94 95
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
        for i, node_name in enumerate(self.graph.topo_sort):
M
mamingjie-China 已提交
96
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if op in self.directly_map_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.directly_map(node)
            elif op in self.elementwise_ops:
                if len(unsupported_ops) > 0:
                    continue
                self.elementwise_map(node)
            elif hasattr(self, op):
                if len(unsupported_ops) > 0:
                    continue
                func = getattr(self, op)
J
jiangjiajun@baidu.com 已提交
111 112
                try:
                    func(node)
113
                except Exception as e:
J
jiangjiajun@baidu.com 已提交
114
                    unsupported_ops.add(op)
J
jiangjiajun 已提交
115
                    print("\n{}\n".format(traceback.format_exc()))
116 117 118
            else:
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
119
            print("\n========= {} OPs are not supported yet ===========".format(
120 121 122 123
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("========== {} ============".format(op))
            sys.exit(-1)
M
mamingjie-China 已提交
124
        sys.stderr.write("\nDone!\n")
125 126 127 128

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
J
jiangjiajun 已提交
129
        input = self.graph.get_node(node.layer.input[0])
130 131 132 133 134 135
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
M
modify  
mamingjie-China 已提交
136

J
jiangjiajun 已提交
137 138 139 140 141
        program.add_layer(
            kernel="fluid.layers.{}".format(op_info[0]),
            inputs={"x": input.name},
            outputs=[node.name],
            **attr)
142 143 144 145

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
146 147 148 149 150 151 152
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.{}".format(op_type),
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name])
153 154 155 156 157 158

    def Placeholder(self, node):
        shape = node.out_shapes[0]
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
        dtype = node.dtype
J
jiangjiajun 已提交
159 160 161 162 163 164 165
        program.add_layer(
            kernel="fluid.data",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name))
166 167 168 169 170 171 172 173 174 175 176

    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185
        program.parameters[node.name] = node.value
        program.add_layer(
            kernel="fluid.layers.create_parameter",
            inputs={},
            outputs=[node.name],
            dtype=string(dtype),
            shape=shape,
            name=string(node.name),
            default_initializer=initializer)
186 187

    def Transpose(self, node):
J
jiangjiajun 已提交
188 189
        input = self.graph.get_node(node.layer.input[0])
        perm = self.graph.get_node(node.layer.input[1])
190 191 192
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
        perm = perm.value.tolist()

J
jiangjiajun 已提交
193 194 195 196 197
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": input.name},
            outputs=[node.name],
            perm=perm)
198

199 200 201 202 203 204 205
    def Fill(self, node):
        dims = self.graph.get_node(node.layer.input[0], copy=True)
        input_value = self.graph.get_node(node.layer.input[1], copy=True)
        assert input_value.layer_type == "Const", "Value of fill OP should be Const"

        input_value = input_value.value
        input_dtype = string(input_value.dtype)
J
jiangjiajun 已提交
206 207 208 209 210 211 212
        program.add_layer(
            "fluid.layers.fill_constant",
            inputs={},
            outputs=[node.name],
            shape=dims,
            dtype=string(input_dtype),
            value=input_value)
213 214 215 216 217 218 219 220

    def DepthToSpace(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        block_size = node.get_attr("block_size")
        data_format = node.get_attr("data_format").decode()
        n, h, w, c = input.out_shapes[0]

J
jiangjiajun 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("depth_to_space", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        shape = [0, block_size * block_size, -1, h, w]
        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": input_name},
            outputs=[reshape_name],
            shape=shape)

        transpose_name = gen_name("depth_to_space", "transpose")
        program.add_layer(
            kernel="fluid.layers.transpose",
            inputs={"x": reshape_name},
            outputs=[transpose_name],
            perm=[0, 2, 1, 3, 4])

        reshape_name = gen_name("depth_to_space", "reshape")
        program.add_layer(
            kernel="fluid.layers.reshape",
            inputs={"x": transpose_name},
            outputs=[reshape_name],
            shape=[0, c, h, w])

        program.add_layer(
            kernel="fluid.layers.pixed_shuffle",
            inputs={"input": reshape_name},
            outputs=[node.name],
            upscale_factor=block_size)
258 259

        if data_format == "NHWC":
J
jiangjiajun 已提交
260 261 262 263 264
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
265

266 267 268 269 270 271 272 273
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun 已提交
274 275 276 277 278 279 280 281
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("max_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
282 283
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("max"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
301 302

    def Conv2D(self, node):
J
jiangjiajun 已提交
303 304
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
305 306 307 308 309 310 311

        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

J
jiangjiajun@baidu.com 已提交
312 313
        if kernel.layer_type == 'Const':
            kernel_value = kernel.value
314 315 316 317 318 319 320 321
            kernel_weight_name = kernel.layer_name.replace('/', '_')
        else:
            kernel_value = self.decoder.infer_tensor(kernel)
            if kernel.layer_type == 'Split':
                kernel_weight_name = "{}_{}_kernel".format(node.layer_name,
                                                           kernel.layer_name)
            else:
                kernel_weight_name = kernel.layer_name.replace('/', '_')
J
jiangjiajun 已提交
322 323
        program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
                                                                 (3, 2, 0, 1))
324

J
jiangjiajun 已提交
325 326
        input_name = input.name
        if data_format == "NHWC":
327 328
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            transpose_name = gen_name("conv2d", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel_weight_name),
            num_filters=k_size[3],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
355 356

    def BiasAdd(self, node):
J
jiangjiajun 已提交
357 358 359 360 361 362 363
        input = self.graph.get_node(node.layer.input[0])
        bias = self.graph.get_node(node.layer.input[1])
        program.add_layer(
            kernel="fluid.layers.elementwise_add",
            inputs={"x": input.name,
                    "y": bias.name},
            outputs=[node.name])
364 365

    def FusedBatchNorm(self, node):
J
jiangjiajun 已提交
366 367 368 369 370
        input = self.graph.get_node(node.layer.input[0])
        gamma = self.graph.get_node(node.layer.input[1])
        beta = self.graph.get_node(node.layer.input[2])
        moving_mean = self.graph.get_node(node.layer.input[3])
        moving_var = self.graph.get_node(node.layer.input[4])
371 372 373 374 375 376 377
        data_format = node.get_attr("data_format").decode()

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"

J
jiangjiajun 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("batch_norm", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.batch_norm",
            inputs={"input": input_name},
            outputs=[node.name],
            epsilon=node.get_attr("epsilon"),
            param_attr=string(gamma.name),
            bias_attr=string(beta.name),
            moving_mean_name=string(moving_mean.name),
            moving_variance_name=string(moving_var.name),
            is_test=True)
398

J
jiangjiajun 已提交
399 400 401 402 403 404
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
405

J
jiangjiajun 已提交
406 407 408 409 410 411
    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        dims = reduce_idx.value.tolist()
        keep_dims = node.get_attr("keep_dims")
412

J
jiangjiajun 已提交
413 414 415 416 417 418
        program.add_layer(
            kernel="fluid.layers.reduce_mean",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dims,
            keep_dim=keep_dims)
419 420

    def Reshape(self, node):
J
jiangjiajun 已提交
421 422
        input = self.graph.get_node(node.layer.input[0])
        param = self.graph.get_node(node.layer.input[1])
423
        if param.layer_type == "Const":
424
            shape = param.value.tolist()
J
jiangjiajun 已提交
425 426 427 428 429
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name},
                outputs=[node.name],
                shape=shape)
430
        else:
J
jiangjiajun 已提交
431 432 433 434 435
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": input.name,
                        "shape": param.name},
                outputs=[node.name])
436 437 438 439
        if param.layer_type != "Const":
            out_shape = numpy.array(node.out_shapes[0])
            if (out_shape > 0).any():
                out_shape[out_shape < 0] = 0
J
jiangjiajun 已提交
440 441 442 443 444
                program.add_layer(
                    kernel="fluid.layers.reshape",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=out_shape.tolist())
445 446

    def Pad(self, node):
J
jiangjiajun 已提交
447 448
        input = self.graph.get_node(node.layer.input[0])
        paddings = self.graph.get_node(node.layer.input[1])
449 450 451 452
        assert paddings.layer_type == "Const", "Padding should be Const"
        paddings = paddings.value.flatten().tolist()

        if len(input.out_shapes[0]) == 4:
J
jiangjiajun 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
                new_padding = paddings[2:6]
                transpose_name = gen_name("pad", "transpose")
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": input.name},
                    outputs=[transpose_name],
                    perm=[0, 3, 1, 2])
                program.add_layer(
                    kernel="fluid.layers.pad2d",
                    inputs={"input": transpose_name},
                    outputs=[node.name],
                    paddings=new_padding)
                program.add_layer(
                    kernel="fluid.layers.transpose",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    perm=[0, 2, 3, 1])
471 472
                return

J
jiangjiajun 已提交
473 474 475 476 477
        program.add_layer(
            kernel="fluid.layers.pad",
            inputs={"input": input.name},
            outputs=[node.name],
            paddings=paddings)
478

J
jiangjiajun 已提交
479 480 481 482 483 484 485 486
    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0])
        squeeze_dims = node.get_attr('squeeze_dims')
        program.add_layer(
            kernel="fluid.layers.squeeze",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=squeeze_dims)
487

J
jiangjiajun 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.softmax",
            inputs={"input": input.name},
            outputs=[node.name],
            axis=axis)

    def Shape(self, node):
        input = self.graph.get_node(node.layer.input[0])
        program.add_layer(
            kernel="fluid.layers.shape",
            inputs={"input": input.name},
            outputs=[node.name])
503

J
jiangjiajun 已提交
504 505 506 507 508 509 510 511 512 513
    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0])
        axis = self.graph.get_node(node.layer.input[1])
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
        axis = axis.value
        program.add_layer(
            kernel="fluid.layers.argmax",
            inputs={"x": input.name},
            outputs=[node.name],
            axis=axis)
514 515

    def MatMul(self, node):
J
jiangjiajun 已提交
516 517
        x = self.graph.get_node(node.layer.input[0])
        y = self.graph.get_node(node.layer.input[1])
518 519
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
M
mamingjie-China 已提交
520 521 522 523
        if transpose_a is None:
            transpose_a = node.get_attr('adj_x')
        if transpose_b is None:
            transpose_b = node.get_attr('adj_y')
J
jiangjiajun 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        program.add_layer(
            kernel="fluid.layers.matmul",
            inputs={"x": x.name,
                    "y": y.name},
            outputs=[node.name],
            transpose_x=transpose_a,
            transpose_y=transpose_b)

    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"

        in_shape = input.out_shapes[0]
        k_size = kernel.out_shapes[0]
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
543

J
jiangjiajun 已提交
544 545
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
M
mamingjie-China 已提交
546

J
jiangjiajun 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name('depthwise_conv2d', 'transpose')
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d",
            inputs={"input": input_name},
            outputs=[node.name],
            num_filters=in_shape[1],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            groups=k_size[3] * in_shape[1],
            padding=string(pad_mode),
            param_attr=string(kernel.layer_name),
            bias_attr=False)
M
mamingjie-China 已提交
572

J
jiangjiajun 已提交
573 574 575 576 577 578 579 580
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def AvgPool(self, node):
581
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()

        input_name = input.name
        if data_format == "NHWC":
            transpose_name = gen_name("avg_pool", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            strides = [strides[i] for i in [0, 3, 1, 2]]
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": input_name},
            outputs=[node.name],
            pool_size=k_size[2:4],
            pool_type=string("avg"),
            pool_stride=strides[2:4],
            pool_padding=string(pad_mode))

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def Pack(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input]
        axis = node.get_attr("axis")
        program.add_layer(
            kernel="fluid.layers.stack",
            inputs={"x": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)

    def ConcatV2(self, node):
        inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
        axis = self.graph.get_node(node.layer.input[-1])
        assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
629
        axis = axis.value
J
jiangjiajun 已提交
630 631 632 633 634 635 636
        if axis < 0:
            axis += len(inputs[0].out_shapes[0])
        program.add_layer(
            kernel="fluid.layers.concat",
            inputs={"input": [i.name for i in inputs]},
            outputs=[node.name],
            axis=axis)
637 638

    def StridedSlice(self, node):
J
jiangjiajun 已提交
639 640 641 642
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        end = self.graph.get_node(node.layer.input[2])
        strides = self.graph.get_node(node.layer.input[3])
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[
            0] == 1, "Only support strides be 1 in StridedSlice OP"

        begin = begin.value.tolist()
        end = end.value.tolist()

        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        begin_mask = node.get_attr('begin_mask')
        end_mask = node.get_attr('end_mask')
        ellipsis_mask = node.get_attr('ellipsis_mask')
        new_axis_mask = node.get_attr('new_axis_mask')
        shrink_axis_mask = node.get_attr('shrink_axis_mask')

        assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format(
            node.layer_type, node.layer.name, ellipsis_mask)

        # TODO codes without validation
        # Use it carefully
        new_begin = list()
        new_end = list()
        new_axes = list()
        shrink_axes = list()
        for i, item in enumerate(begin):
            mask = (new_axis_mask >> i) & 1
            if mask != 0:
                new_axes.append(i)
                continue

            mask = (shrink_axis_mask >> i) & 1
            if mask != 0:
                shrink_axes.append(i)

            mask = (begin_mask >> i) & 1
            if mask != 0:
                new_begin.append(0)
            else:
                new_begin.append(item)

            mask = (end_mask >> i) & 1
            if mask != 0:
                new_end.append(999999)
            else:
                new_end.append(end[i])

J
jiangjiajun 已提交
694 695 696 697 698 699 700
        program.add_layer(
            kernel="fluid.layers.slice",
            inputs={"input": input.name},
            outputs=[node.name],
            axes=[i for i in range(len(new_begin))],
            starts=new_begin,
            ends=new_end)
701
        if len(new_axes) > 0:
J
jiangjiajun 已提交
702 703 704 705 706
            program.add_layer(
                kernel="fluid.layers.unsqueeze",
                inputs={"x": node.name},
                outputs=[node.name],
                axes=new_axes)
707 708 709 710
        if len(shrink_axes) > 0:
            if len(input.out_shapes[0]) + len(new_axes) <= 1:
                pass
            else:
J
jiangjiajun 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
                program.add_layer(
                    kernel="fluid.layers.unsqueeze",
                    inputs={"x": node.name},
                    outputs=[node.name],
                    axes=new_axes)

    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0])
        input = self.graph.get_node(node.layer.input[1])
        assert dim.layer_type == "Const"
        num_split = node.get_attr('num_split')
        dim = dim.value

        program.add_layer(
            kernel="fluid.layers.split",
            inputs={"input": input.name},
            outputs=[
                "{}_p{}".format(node.layer_name, i) for i in range(num_split)
            ],
            num_or_sections=num_split,
            dim=dim)
732 733

    def Slice(self, node):
J
jiangjiajun 已提交
734 735 736 737 738 739
        input = self.graph.get_node(node.layer.input[0])
        begin = self.graph.get_node(node.layer.input[1])
        size = self.graph.get_node(node.layer.input[2])

        inputs = {"x": input.name}
        attrs = {}
740 741
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
J
jiangjiajun 已提交
742
            attrs['offsets'] = begin
743
        else:
744
            shape = begin.out_shapes[0]
J
jiangjiajun 已提交
745 746 747 748 749 750 751
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": begin.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['offsets'] = reshape_name
752
        if size.layer_type == "Const":
753
            size = size.value.tolist()
J
jiangjiajun 已提交
754
            attrs['shape'] = size
755
        else:
756
            shape = size.out_shapes[0]
J
jiangjiajun 已提交
757 758 759 760 761 762 763 764 765 766 767 768
            reshape_name = gen_name("slice", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": size.name},
                outputs=[reshape_name],
                shape=shape)
            inputs['shape'] = reshape_name
        program.add_layer(
            kernel="fluid.layers.crop_tensor",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
769

J
jiangjiajun 已提交
770 771 772 773 774 775
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}
776

J
jiangjiajun 已提交
777 778 779 780 781 782 783 784 785 786 787 788
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
        else:
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
789

J
jiangjiajun 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803
        if data_format == "NHWC":
            transpose_name = gen_name("resize_nearest", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_nearest",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
804

J
jiangjiajun 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0])
        resize_shape = self.graph.get_node(node.layer.input[1])
        data_format = "NHWC"
        inputs = {"input": input.name}
        attrs = {"align_corners": node.get_attr("align_corners")}

        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
            attrs["out_shape"] = resize_shape
822
        else:
J
jiangjiajun 已提交
823 824 825 826 827 828 829 830
            shape = resize_shape.out_shapes[0]
            reshape_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.reshape",
                inputs={"x": resize_shape.name},
                outputs=[reshape_name],
                shape=shape)
            inputs["out_shape"] = reshape_name
831

J
jiangjiajun 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845
        if data_format == "NHWC":
            transpose_name = gen_name("resize_bilinear", "reshape")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            inputs["input"] = transpose_name

        program.add_layer(
            kernel="fluid.layers.resize_bilinear",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
846

J
jiangjiajun 已提交
847 848 849 850 851 852
        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])
853

J
jiangjiajun 已提交
854 855 856 857 858 859 860 861
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0])
        dtype = node.dtype
        program.add_layer(
            kernel="fluid.layers.cast",
            inputs={"x": input.name},
            outputs=[node.name],
            dtype=string(dtype))
862

J
jiangjiajun 已提交
863 864 865
    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
866 867 868 869
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()

J
jiangjiajun 已提交
870 871 872 873 874 875
        program.add_layer(
            kernel="fluid.layers.reduce_sum",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
876

J
jiangjiajun 已提交
877 878 879
    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0])
        reduce_idx = self.graph.get_node(node.layer.input[1])
880 881 882
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
        dim = reduce_idx.value.tolist()
J
jiangjiajun 已提交
883 884 885 886 887 888
        program.add_layer(
            kernel="fluid.layers.reduce_max",
            inputs={"input": input.name},
            outputs=[node.name],
            dim=dim,
            keep_dim=keep_dims)
889 890 891 892 893

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
J
jiangjiajun 已提交
894 895 896 897 898 899 900
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={},
                outputs=[node.name],
                shape=shape,
                min=0.0,
                max=0.9999)
901
        else:
J
jiangjiajun 已提交
902 903 904 905 906 907
            program.add_layer(
                kernel="fluid.layers.uniform_random",
                inputs={'shape': shape.name},
                outputs=[node.name],
                min=0.0,
                max=0.9999)
M
mamingjie-China 已提交
908

J
jiangjiajun 已提交
909 910 911 912 913 914 915 916 917
    def Conv2DBackpropInput(self, node):
        out_shape = self.graph.get_node(node.layer.input[0])
        kernel = self.graph.get_node(node.layer.input[1])
        input = self.graph.get_node(node.layer.input[2])

        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"

        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
M
mamingjie-China 已提交
918
        else:
J
jiangjiajun 已提交
919 920
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])
M
mamingjie-China 已提交
921

J
jiangjiajun 已提交
922 923 924 925 926 927 928 929 930 931 932
        in_shape = input.out_shapes[0]
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
        k_size = kernel.out_shapes[0]
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

        pad_mode = node.get_attr("padding").decode()
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
M
mamingjie-China 已提交
933

J
jiangjiajun 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        program.parameters[kernel.layer_name.replace(
            '/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))

        input_name = input.name
        if data_format == "NHWC":
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
            transpose_name = gen_name("conv2dbackpropinput", "transpose")
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": input.name},
                outputs=[transpose_name],
                perm=[0, 3, 1, 2])
            input_name = transpose_name

        program.add_layer(
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": input_name},
            outputs=[node.name],
            bias_attr=False,
            param_attr=string(kernel.layer_name),
            num_filters=k_size[2],
            filter_size=k_size[0:2],
            stride=strides[2:4],
            dilation=dilations[2:4],
            padding=string(pad_mode),
            output_size=out_shape[1:3])

        if data_format == "NHWC":
            program.add_layer(
                kernel="fluid.layers.transpose",
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 2, 3, 1])