opset.py 106.8 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
109
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
110
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
111 112 113 114 115 116 117 118 119 120
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
121
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
122 123
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
124
        'Less': 'paddle.less_than',
W
WJJ1995 已提交
125
        'LessOrEqual': 'paddle.less_equal',
S
SunAhong1993 已提交
126 127
    }

S
SunAhong1993 已提交
128 129 130
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
131 132 133
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
134
                    axes=None, keepdims=True)
135 136 137 138
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
139
                    axes=None, keepdim=True)
140 141 142 143
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
144
                    axes=None, keepdim=True)
145 146 147 148
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
149
                    axes=None, keepdim=True)
150
        ],
S
SunAhong1993 已提交
151 152
        # active function
        'Relu': ['paddle.nn.ReLU'],
153 154 155 156 157 158 159 160 161 162
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
163 164 165
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
166 167 168 169
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
170
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
171
        'Log': ['paddle.log'],
172 173 174
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
175 176 177 178
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
Y
yeliang2258 已提交
179 180
        'Sin': ['paddle.sin'],
        'Cos': ['paddle.cos'],
S
SunAhong1993 已提交
181 182 183 184 185 186 187 188 189
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
190
        self.done_weight_list = list()
191 192 193
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
S
SunAhong1993 已提交
194 195 196 197 198 199

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
215
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
216 217
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
218
            output_name = node.name
S
SunAhong1993 已提交
219
            layer_outputs = [op_name, output_name]
220

S
SunAhong1993 已提交
221 222
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
223
                inputs={"x": input.name},
S
SunAhong1993 已提交
224 225 226 227 228
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
229 230
                inputs={"x": input.name},
                outputs=[node.name],
231 232
                **layer_attrs)

S
SunAhong1993 已提交
233 234 235 236 237
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
238
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
239
        self.paddle_graph.add_layer(
240
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
241 242 243 244 245 246 247 248 249 250 251 252

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
253
            outputs=[node.name],
S
SunAhong1993 已提交
254 255
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
256 257 258 259 260 261 262

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
263

S
fix  
SunAhong1993 已提交
264
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
W
WJJ1995 已提交
265 266
            if node.weight == float('inf') or node.weight == float('-inf'):
                node.weight = string(node.weight)
S
SunAhong1993 已提交
267
            self.paddle_graph.add_layer(
268 269
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
270
                outputs=[node.name],
S
SunAhong1993 已提交
271 272 273 274
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
275
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
276 277 278
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
279
                outputs=[node.name],
S
SunAhong1993 已提交
280
                shape=shape,
S
SunAhong1993 已提交
281
                attr=string(node.name),
S
SunAhong1993 已提交
282
                dtype=string(dtype),
283
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
300
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
301
        attrs = dict()
W
WJJ1995 已提交
302
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
303 304 305 306
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
307
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
308
                # which is the same as the rank of input.
W
WJJ1995 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
336 337 338
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
339
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
340
                # which is the same as the rank of input.
341 342
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
343 344 345
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
346
                size_values = _const_weight_or_none(val_sizes)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
408 409
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
410
                    })
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
426
                return
S
SunAhong1993 已提交
427
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
428 429 430 431 432 433 434 435 436 437 438 439
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
440

S
SunAhong1993 已提交
441
        mode = node.get_attr('mode', 'nearest')
442 443 444 445 446
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
447 448
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
449 450
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
451 452 453 454 455 456
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
457 458 459
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
460
            outputs=[node.name],
S
SunAhong1993 已提交
461
            **attrs)
462

W
WJJ1995 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475
    @print_mapping_info
    def CumSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = self.graph.get_input_node(node, idx=1, copy=True)
        axis_values = _const_weight_or_none(axis)
        assert axis_values is not None, 'Axis only support constant tensor!'
        layer_attrs = {'axis': axis_values}
        self.paddle_graph.add_layer(
            'paddle.cumsum',
            inputs={"x": val_x.name},
            outputs=[node.name],
            **layer_attrs)

S
SunAhong1993 已提交
476 477 478 479 480 481 482
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
483 484
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
485 486 487 488
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
489 490
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
491
            min=0.0,
492 493
            max=1.0)

S
SunAhong1993 已提交
494 495 496 497 498 499 500 501
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
502 503 504 505
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
506 507 508 509 510 511 512 513 514 515

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
516 517 518 519 520 521
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
522 523 524 525 526 527 528 529 530 531 532 533 534 535
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
536 537 538 539 540
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
541
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
542 543
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
544
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
545 546 547
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
563
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
564 565 566
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
567 568 569 570 571 572
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
573 574 575 576 577 578 579 580
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
581
        mode = node.get_attr('mode', 'constant')
582 583
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
584 585 586
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
587
        assume_pad = False
S
SunAhong1993 已提交
588 589
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
590 591 592
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
593
        else:
S
fix  
SunAhong1993 已提交
594 595 596
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
597 598
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
599
            if len(pads) == 10 and sum(pads) == 0:
600
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
601
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
602
                if data_shape:
603 604
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
605
                if output_shape:
606 607
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
608 609 610 611
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
612
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
613 614 615
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
616 617
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
618
                    if output_shape:
619 620
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
621 622 623
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
624 625
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
626 627
                        layer_attrs['pad'] = paddings
                    else:
628 629
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
630
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
631
                if data_shape:
632 633
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
634
                if output_shape:
635 636
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
637
                if assume_pad:
S
for pad  
SunAhong1993 已提交
638
                    paddle_op = 'paddle.nn.Pad2D'
W
wjj19950828 已提交
639
                    # x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
S
fix  
SunAhong1993 已提交
640
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
641
                        (2, -1)).transpose().astype("int32")
W
wjj19950828 已提交
642 643
                    if mode == 'constant':
                        paddings = paddings.flatten().tolist()
S
for pad  
SunAhong1993 已提交
644 645
                        layer_attrs['padding'] = paddings
                    else:
W
wjj19950828 已提交
646 647 648 649 650 651 652 653 654 655
                        paddings = np.flip(paddings, axis=0).flatten().tolist()
                        if sum(paddings[:4]) == 0:
                            paddings = paddings[4:]
                            layer_attrs['padding'] = paddings
                        else:
                            layer_attrs["pad"] = paddings
                            paddle_op = "custom_layer:PadAllDim4WithOneInput"
                else:
                    paddle_op = 'paddle.nn.functional.pad'
                    layer_attrs["pad"] = np.array(pads).tolist()
S
SunAhong1993 已提交
656
            else:
W
wjj19950828 已提交
657
                pad_data_temp = pads[0::2]
658
                pad_data_all = []
W
wjj19950828 已提交
659 660 661
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
662 663 664 665 666 667 668 669 670

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
671
            self.paddle_graph.add_layer(
672 673 674 675
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
676
                **layer_attrs)
S
fix  
SunAhong1993 已提交
677
            if not op_independent:
S
SunAhong1993 已提交
678
                return node.name + '_paded'
S
SunAhong1993 已提交
679
        else:
S
fix  
SunAhong1993 已提交
680 681
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
682
                if data_shape:
683 684
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
685
                if output_shape:
686 687
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
688 689 690 691 692 693 694 695
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
696 697 698
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
699 700 701 702 703 704
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
705 706
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
707
                    if output_shape:
708 709
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
710 711 712
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
713 714 715 716
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
717 718 719 720 721 722
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
723 724
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
725
                if output_shape:
726 727
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
728 729
                if assume_pad:
                    self.paddle_graph.add_layer(
730 731 732 733
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
734 735 736
                        value=value,
                        mode=string(mode))
            else:
737
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
738 739
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
740 741 742 743 744

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
745
        if axes is None:
W
WJJ1995 已提交
746 747 748
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
Y
fix  
yeliang2258 已提交
749
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
W
WJJ1995 已提交
750 751 752 753 754
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1])
S
SunAhong1993 已提交
755
        else:
W
WJJ1995 已提交
756 757 758 759 760
            self.paddle_graph.add_layer(
                'paddle.unsqueeze',
                inputs={"x": val_x.name},
                axis=axes,
                outputs=[node.name])
S
SunAhong1993 已提交
761 762 763 764 765 766 767 768

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
769 770 771
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
793
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
794 795 796
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
W
WJJ1995 已提交
797 798
            if value == float('inf') or value == float('-inf'):
                value = string(value)
S
SunAhong1993 已提交
799
            self.paddle_graph.add_layer(
800 801
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
802
                outputs=[node.name],
S
SunAhong1993 已提交
803 804 805 806 807
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
808
            self.weights[node.name] = value
S
SunAhong1993 已提交
809 810 811
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
812
                outputs=[node.name],
S
SunAhong1993 已提交
813
                shape=shape,
S
SunAhong1993 已提交
814
                attr=string(node.name),
S
SunAhong1993 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
829
        output_name = node.name
S
SunAhong1993 已提交
830 831 832 833 834
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
835 836
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
837 838 839 840 841
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
842
        if dim == 3:
S
SunAhong1993 已提交
843 844 845 846 847 848
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
849 850 851
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
852
        self.paddle_graph.add_layer(
853 854 855
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
856 857 858 859 860 861 862
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
863
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
877
        self.paddle_graph.add_layer(
878 879
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
880
        self.paddle_graph.add_layer(
881
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
882

Y
yeliang2258 已提交
883 884 885 886 887 888 889 890
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
891 892 893 894
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
W
WJJ1995 已提交
895 896 897
        indices_values = _const_weight_or_none(indices, necessary=True)
        if isinstance(indices_values, np.ndarray):
            indices_values = indices_values.tolist()
S
SunAhong1993 已提交
898
        indices_shape = indices.out_shapes[0]
W
WJJ1995 已提交
899
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
900
        axis = node.get_attr('axis', 0)
W
WJJ1995 已提交
901 902 903
        if len(indices_shape) == 1 or \
            (indices_values is not None and isinstance(indices_values, int)) or \
            (indices_values is not None and len(indices_values) == 1):
S
SunAhong1993 已提交
904 905
            self.paddle_graph.add_layer(
                'paddle.gather',
W
WJJ1995 已提交
906
                inputs={'x': val_x.name,
S
SunAhong1993 已提交
907
                        'index': indices.name},
908
                outputs=[node.name],
W
WJJ1995 已提交
909 910 911
                axis=axis)
            # deal with indice is scalar(0D) Tensor
            if isinstance(indices_values, int) and len(val_x_shape) > 1:
S
SunAhong1993 已提交
912 913
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
914 915
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
916
                    axis=[axis])
W
WJJ1995 已提交
917 918 919
        else:
            # if val_x is DataNode, convert gather to embedding
            if axis == 0 and isinstance(val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
920
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
921 922
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
923
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
924
                    outputs=[indices_cast],
S
SunAhong1993 已提交
925 926
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
927
                output_name = node.name
S
SunAhong1993 已提交
928
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
929
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
930 931 932 933
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
W
WJJ1995 已提交
934 935
                    num_embeddings=val_x_shape[0],
                    embedding_dim=val_x_shape[1])
S
SunAhong1993 已提交
936 937 938
            else:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
939
                    inputs={"x": indices.name},
W
WJJ1995 已提交
940 941 942
                    outputs=[indices.name + "_reshape"],
                    shape=[-1])
                gather_1d = node.name + '_1D'
S
SunAhong1993 已提交
943 944
                self.paddle_graph.add_layer(
                    'paddle.gather',
W
WJJ1995 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
                    inputs={
                        'x': val_x.name,
                        'index': indices.name + "_reshape"
                    },
                    outputs=[gather_1d],
                    axis=axis)
                # if shape is known
                if len(indices_shape) != 0 and len(val_x_shape) != 0:
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=val_x_shape[:axis] + indices_shape +
                        val_x_shape[axis + 1:])
                else:
                    all_shape_name = list()
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": val_x.name},
                        outputs=[val_x.name + "_shape"])
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": indices.name},
                        outputs=[indices.name + "_shape"])
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_start"],
                        axes=[0],
                        starts=[0],
                        ends=[axis])
                    all_shape_name.append(val_x.name + "_shape_slice_start")
                    all_shape_name.append(indices.name + "_shape")
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_end"],
                        axes=[0],
                        starts=[axis + 1],
                        ends=[2147483647])
                    all_shape_name.append(val_x.name + "_shape_slice_end")
                    self.paddle_graph.add_layer(
                        'paddle.concat',
                        inputs={"x": all_shape_name},
                        outputs=[node.name + "_all_shape"],
                        axis=0)
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=node.name + "_all_shape")
S
SunAhong1993 已提交
996 997 998 999 1000 1001 1002 1003 1004

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1005 1006 1007 1008 1009
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1010
                outputs=[node.name])
S
SunAhong1993 已提交
1011
        else:
S
SunAhong1993 已提交
1012
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1013 1014 1015
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1016 1017
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1018 1019
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1020
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1021 1022
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1023
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1024 1025 1026 1027 1028
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1029 1030
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1031 1032
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1033 1034
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1035 1036 1037
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1038
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1039 1040 1041 1042 1043 1044 1045
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1046
                    'index': indices.name,
S
SunAhong1993 已提交
1047 1048 1049
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1050
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1051 1052 1053
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1054
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1055 1056 1057
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1058
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1059 1060 1061 1062 1063 1064
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1065
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1066 1067
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1068
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1069 1070 1071 1072 1073 1074 1075
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1076
                outputs=[node.name])
S
SunAhong1993 已提交
1077 1078 1079 1080 1081 1082 1083

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1084 1085 1086 1087 1088
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1089 1090 1091
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1092
            outputs=[node.name],
S
SunAhong1993 已提交
1093 1094 1095 1096 1097 1098 1099
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
W
WJJ1995 已提交
1100 1101 1102 1103 1104 1105
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": val_x.name},
                outputs=[val_x.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
1106 1107 1108 1109
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1110 1111
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1112
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1113 1114 1115 1116 1117
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1118
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1119 1120
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1121 1122
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1123
                steps = _const_weight_or_none(steps).tolist()
1124

S
SunAhong1993 已提交
1125 1126
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1127 1128
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1129
            }
S
SunAhong1993 已提交
1130
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1131 1132 1133
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
W
WJJ1995 已提交
1134 1135 1136
                    if len(val_x.out_shapes[0]) != 0 and starts_value[
                            idx] >= val_x.out_shapes[0][axes[
                                idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1137 1138 1139 1140
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1141

S
SunAhong1993 已提交
1142 1143 1144 1145 1146 1147 1148
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1149
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1150 1151
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1152
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1153 1154 1155 1156
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1157
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1158 1159
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1160 1161
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1162
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1163 1164 1165 1166 1167 1168 1169
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1170 1171 1172 1173
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1174 1175 1176 1177 1178 1179 1180 1181
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1182 1183 1184
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1185 1186 1187
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1188 1189 1190
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1191
                **layer_attrs)
W
WJJ1995 已提交
1192 1193 1194 1195 1196 1197
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('uint8'))
S
SunAhong1993 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
W
WJJ1995 已提交
1210 1211
            if value == float('inf') or value == float('-inf'):
                value = string(value)
1212
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1213
            self.paddle_graph.add_layer(
1214 1215
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1216
                outputs=[node.name],
S
SunAhong1993 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1231

S
SunAhong1993 已提交
1232
            self.paddle_graph.add_layer(
1233 1234 1235
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1236 1237
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1253 1254 1255 1256 1257 1258
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1384 1385 1386 1387 1388 1389
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1399
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1415
        else:
Y
yeliang2258 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1427
            else:
Y
yeliang2258 已提交
1428
                outputs_list.append(node.name)
W
wjj19950828 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
            if len(split) > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1453 1454
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1455 1456 1457 1458 1459
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1460 1461
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1462 1463 1464 1465 1466 1467
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1468 1469
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1470
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1471 1472 1473 1474 1475 1476
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1477 1478
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1479 1480
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1481
                outputs=[node.name])
S
SunAhong1993 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1496 1497 1498
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1499 1500 1501 1502 1503
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1504 1505 1506 1507
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1531 1532 1533 1534 1535
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1536
        layer_attrs = {
S
SunAhong1993 已提交
1537 1538 1539
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1540 1541 1542 1543
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1544 1545 1546
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1547 1548 1549 1550 1551 1552 1553 1554
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1555
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1556 1557 1558 1559 1560
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1561 1562 1563
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1564 1565 1566 1567 1568
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1569
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1570 1571
        axis = node.get_attr('axis', 1)
        if axis == 0:
W
WJJ1995 已提交
1572 1573 1574 1575 1576
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1, -1])
S
SunAhong1993 已提交
1577
        else:
W
WJJ1995 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            if len(output_shape) != 0:
                shape_list = [1, 1]
                for s in output_shape[:axis]:
                    shape_list[0] *= s
                for s in output_shape[axis:]:
                    shape_list[1] *= s
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=shape_list)
            else:
                # flatten + reshape
                self.paddle_graph.add_layer(
                    "paddle.flatten",
                    inputs={"input": val_x.name},
                    outputs=[val_x.name + "_flatten"],
                    start_axis=[0],
                    stop_axis=[axis])
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_x.name + "_flatten"},
                    outputs=[node.name],
                    shape=[0, -1])
S
SunAhong1993 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1613
        val_mm = node.name + '_mm'
1614
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1625
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1626 1627 1628

        if beta != 0:
            if beta == 1.:
1629
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1630
                self.paddle_graph.add_layer(
1631
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1632
            else:
S
SunAhong1993 已提交
1633
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1634 1635
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1636
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1637 1638 1639 1640
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1641
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1642 1643 1644 1645 1646

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1647 1648 1649 1650
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1651
        }
1652 1653
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1654 1655 1656 1657

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1658 1659
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1660 1661
            }
            self.paddle_graph.add_layer(
1662
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1663 1664 1665 1666 1667 1668 1669

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1670
        inputs_dict = {"x": val_x.name, "y": val_y.name}
W
WJJ1995 已提交
1671 1672
        if len(y_shape) != 0 and y_shape[0] == 1 and len(
                x_shape) != 0 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1673
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1674 1675
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1676
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1677 1678 1679 1680
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1681
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1682 1683
        else:
            self.paddle_graph.add_layer(
1684
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1685 1686 1687 1688

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1689
        output_name = node.name
S
SunAhong1993 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1722

S
SunAhong1993 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1733 1734 1735
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1736 1737 1738 1739 1740
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1741 1742 1743 1744
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1745
        self.paddle_graph.add_layer(
1746
            "paddle.transpose",
S
SunAhong1993 已提交
1747
            inputs={"x": val_x.name},
1748
            outputs=[node.name],
S
SunAhong1993 已提交
1749 1750 1751 1752 1753
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1754
        output_name = node.name
S
SunAhong1993 已提交
1755 1756 1757 1758 1759 1760
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1761
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1762 1763
            mode = 'all'

S
SunAhong1993 已提交
1764 1765 1766
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1767 1768
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1769 1770 1771 1772
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1773 1774
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1775 1776 1777
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1778 1779
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1780
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1781 1782
            self.paddle_graph.add_layer(
                "paddle.multiply",
1783 1784
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1785 1786 1787
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1788 1789 1790 1791
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1792
                outputs=[output_name])
S
SunAhong1993 已提交
1793
        else:
S
fix  
SunAhong1993 已提交
1794
            if mode == 'channel':
S
SunAhong1993 已提交
1795
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1796 1797
                if slope_data is None:
                    self.paddle_graph.add_layer(
1798 1799
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1800 1801 1802
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1803
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1804
                        inputs={"x": val_x.name,
1805
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1806 1807
                        outputs=[node.name])
                    return
C
Channingss 已提交
1808
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1809
                if len(shape_slope) > 1:
1810 1811
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1812 1813 1814
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1815
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1816
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1817
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1818
            self.paddle_graph.add_layer(
1819 1820 1821
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1822
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1823 1824 1825 1826 1827

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
W
WJJ1995 已提交
1828 1829 1830 1831 1832
        if axes is None:
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
        if len(val_x.out_shapes[0]) <= 1 and len(axes) == 1 and axes[0] == 0:
S
SunAhong1993 已提交
1833 1834
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1835 1836
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1837 1838 1839
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1840 1841 1842
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1843 1844 1845 1846 1847 1848 1849 1850
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1851 1852 1853
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1854 1855 1856 1857 1858 1859 1860

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1861 1862
            inputs={'x': val_x.name,
                    'y': val_y.name},
1863
            outputs=[node.name])
S
SunAhong1993 已提交
1864 1865 1866 1867 1868 1869 1870 1871

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

        self.paddle_graph.add_layer(
W
WJJ1995 已提交
1872 1873 1874 1875 1876 1877
            "paddle.where",
            inputs={
                'condition': condition.name,
                'x': val_x.name,
                'y': val_y.name
            },
S
SunAhong1993 已提交
1878
            outputs=[node.name])
S
SunAhong1993 已提交
1879 1880 1881 1882

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
W
wjj19950828 已提交
1883 1884 1885 1886 1887 1888 1889
        self.paddle_graph.add_layer(
            "paddle.nonzero",
            inputs={"x": val_x.name},
            outputs=[val_x.name],
            as_tuple=True)
        self.paddle_graph.add_layer(
            "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1890 1891 1892 1893 1894

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1895
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1896 1897 1898 1899 1900 1901 1902 1903

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1904
            repeats = val_repeats.name
S
SunAhong1993 已提交
1905 1906 1907 1908
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1909
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1910
                    dtype=string("int32"))
1911
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1912 1913 1914 1915

        elif isinstance(repeats, int):
            repeats = [repeats]

1916 1917 1918
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1919 1920
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1921
            "name": string(node.name),
S
SunAhong1993 已提交
1922 1923
        }
        self.paddle_graph.add_layer(
1924 1925 1926 1927
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1928 1929 1930 1931

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1932
        output_name = node.name
S
SunAhong1993 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1957

S
SunAhong1993 已提交
1958 1959 1960 1961 1962 1963 1964
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1965 1966 1967
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1968 1969 1970 1971 1972
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1973
        output_name = node.name
S
SunAhong1993 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1987 1988 1989
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1990 1991
            output_size=output_shape[2:])

Y
yeliang2258 已提交
1992 1993
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
1994
        import paddle
Y
yeliang2258 已提交
1995
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2085
        self.paddle_graph.add_layer(
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2127 2128
            outputs=[node.name])

S
SunAhong1993 已提交
2129 2130 2131
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2132
        output_name = node.name
S
SunAhong1993 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2146 2147 2148
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2149 2150 2151 2152
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2153
        output_name = node.name
S
SunAhong1993 已提交
2154 2155
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2156 2157 2158 2159 2160 2161 2162 2163

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2191
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2220
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2221 2222
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2223 2224 2225 2226 2227 2228
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2229
        if has_bias:
C
Channingss 已提交
2230 2231
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2232 2233 2234 2235 2236 2237 2238
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2239 2240
        else:
            layer_attrs["bias_attr"] = False
2241 2242
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2243 2244 2245 2246
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2247 2248 2249
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2250
                shape=input_shape)
S
SunAhong1993 已提交
2251
        self.paddle_graph.add_layer(
2252 2253 2254
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2255 2256 2257 2258
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2259
        output_name = node.name
S
SunAhong1993 已提交
2260 2261
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2262 2263 2264 2265 2266 2267 2268 2269

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2281
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2282 2283 2284 2285 2286 2287 2288

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

W
wjj19950828 已提交
2289 2290
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2291

W
wjj19950828 已提交
2292
        if len(output_size) != 0:
W
wjj19950828 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2312

W
wjj19950828 已提交
2313 2314 2315 2316 2317 2318 2319 2320
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2321

S
fix  
SunAhong1993 已提交
2322
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2323
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2345
        layer_attrs = {
2346
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2347
            "out_channels": num_out_channels * num_groups,
2348
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2349 2350 2351
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2352
            "groups": num_groups,
2353 2354 2355 2356 2357 2358
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2359 2360
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2361
        if val_b is not None:
2362 2363 2364 2365 2366
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2367 2368
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2369
        self.paddle_graph.add_layer(
2370
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2371
            inputs=inputs_dict,
2372
            outputs=layer_outputs,
S
SunAhong1993 已提交
2373
            **layer_attrs)
2374

S
fix  
SunAhong1993 已提交
2375 2376 2377 2378 2379
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2380
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2381
        self.paddle_graph.add_layer(
2382 2383
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2384
            outputs=[node.name],
C
Channingss 已提交
2385 2386 2387
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2388 2389 2390
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2391
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2392 2393 2394 2395
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2396
            dtype=string('int64'))
S
SunAhong1993 已提交
2397
        self.paddle_graph.add_layer(
2398 2399
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2400 2401 2402
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2403 2404
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2405 2406
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2407 2408
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2409
        self.paddle_graph.add_layer(
2410
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2411 2412
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2413 2414
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2415 2416
                outputs=[node.name],
                dtype=string(node.dtype))
2417

S
SunAhong1993 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2428 2429 2430 2431 2432 2433
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2434 2435
            outputs=layer_outputs,
            axis=axis)
2436

S
SunAhong1993 已提交
2437 2438 2439 2440
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2441
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2442

2443 2444
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2445 2446 2447 2448 2449 2450
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2451
        have_bias = False
C
Channingss 已提交
2452
        if input_nums > 3 and node.layer.input[3] != '':
2453 2454
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2455
            have_bias = True
C
Channingss 已提交
2456 2457
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2458 2459
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2460 2461
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2462 2463
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2464 2465 2466 2467
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2468
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2469 2470
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2471 2472
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2473 2474 2475 2476
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2477
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2478 2479

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2480
        _rename_or_remove_weight(self.weights, input_weight.name)
2481
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2482 2483
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2484
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2485
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2486
        _rename_or_remove_weight(self.weights, bias.name)
2487 2488
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2489 2490 2491 2492 2493 2494

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2495
            slices = [w[:, x * n:y * n] for x, y in intervals]
2496
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2497

2498 2499 2500 2501
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2502

C
Channingss 已提交
2503
        weights = transform_weight_with_bias(
C
Channingss 已提交
2504 2505 2506 2507 2508
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2509
        yh_out = node.output(1)
C
Channingss 已提交
2510
        yc_out = node.output(2)
2511
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2526
        if direction == 'backward':
2527 2528 2529
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2530
        else:
C
Channingss 已提交
2531 2532 2533
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2534

C
Channingss 已提交
2535
        self.paddle_graph.add_layer(
2536 2537 2538 2539 2540
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2541 2542 2543 2544
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2545
            direction=string(direction),
C
Channingss 已提交
2546 2547 2548 2549 2550 2551
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2552
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2553 2554 2555 2556
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2557 2558
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2559 2560 2561 2562 2563 2564
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2565 2566 2567 2568
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
W
wjj19950828 已提交
2569 2570 2571
        k = _const_weight_or_none(val_k)
        if isinstance(k, (list, tuple, np.ndarray)):
            k = k[0]
W
wjj19950828 已提交
2572
        # If k can get the value directly, it is used as an attribute; otherwise it is used as an input tensor
W
wjj19950828 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        if k is not None:
            layer_attrs["k"] = k
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
        else:
            if val_k.dtype != "int32":
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_k.name},
                    outputs=[val_k.name],
                    dtype=string('int32'))
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name,
                        "k": val_k.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
2599

S
add lrn  
SunAhong1993 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2610
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2611
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2612
            "paddle.nn.LocalResponseNorm",
2613 2614
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2615
            **layer_attrs)
2616

S
SunAhong1993 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2629
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2630 2631 2632 2633
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2634
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2635 2636 2637 2638
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2639
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2640 2641 2642 2643 2644
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2645
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2646 2647 2648 2649
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2650
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2651 2652 2653 2654
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
W
wjj19950828 已提交
2666 2667 2668
        layer_attrs["keep_top_k"] = -1
        layer_attrs["nms_threshold"] = 0.0
        layer_attrs["score_threshold"] = 0.0
2669 2670 2671
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
W
wjj19950828 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
            max_output_boxes_per_class = _const_weight_or_none(
                max_output_boxes_per_class)
            if len(scores.out_shapes[0]) != 0:
                num_classes = scores.out_shapes[0][1]
            else:
                num_classes = 1
            if max_output_boxes_per_class is not None:
                max_output_boxes_per_class = max_output_boxes_per_class.tolist()
                if isinstance(max_output_boxes_per_class, int):
                    layer_attrs[
                        "keep_top_k"] = max_output_boxes_per_class * num_classes
                else:
                    layer_attrs["keep_top_k"] = max_output_boxes_per_class[
                        0] * num_classes
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)