general_response_op.cpp 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17
#include <algorithm>
#include <iostream>
M
MRXLT 已提交
18
#include <map>
19 20
#include <memory>
#include <sstream>
M
MRXLT 已提交
21
#include <utility>
22
#include "core/general-server/op/general_infer_helper.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
B
barrierye 已提交
38
using baidu::paddle_serving::predictor::general_model::ModelOutput;
39 40 41
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

42
int GeneralResponseOp::inference() {
B
barrierye 已提交
43 44
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
B
barrierye 已提交
45

46
  const Request *req = dynamic_cast<const Request *>(get_request_message());
B
barrierye 已提交
47 48
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();
49

G
guru4elephant 已提交
50
  Timer timeline;
B
barrierye 已提交
51
  // double response_time = 0.0;
G
guru4elephant 已提交
52 53 54
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

55 56 57
  VLOG(2) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
M
MRXLT 已提交
58

59 60 61 62
  VLOG(2) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

M
bug fix  
MRXLT 已提交
63 64
  VLOG(2) << "max body size : " << brpc::fLU64::FLAGS_max_body_size;

65 66 67 68 69 70
  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
M
MRXLT 已提交
71

B
barrierye 已提交
72
  const GeneralBlob *input_blob;
B
barrierye 已提交
73
  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
B
barrierye 已提交
74 75
    const std::string &pre_name = pre_node_names[pi];
    VLOG(2) << "pre names[" << pi << "]: " << pre_name << " ("
B
barrierye 已提交
76
            << pre_node_names.size() << ")";
B
barrierye 已提交
77 78 79
    input_blob = get_depend_argument<GeneralBlob>(pre_name);
    // fprintf(stderr, "input(%s) blob address %x\n", pre_names.c_str(),
    // input_blob);
B
barrierye 已提交
80
    if (!input_blob) {
B
barrierye 已提交
81
      LOG(ERROR) << "Failed mutable depended argument, op: " << pre_name;
B
barrierye 已提交
82 83
      return -1;
    }
84

B
barrierye 已提交
85 86 87
    const TensorVector *in = &input_blob->tensor_vector;

    ModelOutput *output = res->add_outputs();
B
barrierye 已提交
88 89 90
    // To get the order of model return values
    output->set_engine_name(pre_name);
    FetchInst *fetch_inst = output->add_insts();
M
MRXLT 已提交
91

B
barrierye 已提交
92 93 94
    for (auto &idx : fetch_index) {
      Tensor *tensor = fetch_inst->add_tensor_array();
      tensor->set_elem_type(1);
95
      if (model_config->_is_lod_fetch[idx]) {
M
MRXLT 已提交
96 97
        VLOG(2) << "out[" << idx << "] " << model_config->_fetch_name[idx]
                << " is lod_tensor";
M
MRXLT 已提交
98
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
B
barrierye 已提交
99
          VLOG(2) << "shape[" << k << "]: " << in->at(idx).shape[k];
M
MRXLT 已提交
100
          tensor->add_shape(in->at(idx).shape[k]);
101 102
        }
      } else {
M
MRXLT 已提交
103 104
        VLOG(2) << "out[" << idx << "] " << model_config->_fetch_name[idx]
                << " is tensor";
M
MRXLT 已提交
105 106 107
        for (int k = 0; k < in->at(idx).shape.size(); ++k) {
          VLOG(2) << "shape[" << k << "]: " << in->at(idx).shape[k];
          tensor->add_shape(in->at(idx).shape[k]);
108 109 110 111
        }
      }
    }

B
barrierye 已提交
112 113 114
    int var_idx = 0;
    for (auto &idx : fetch_index) {
      int cap = 1;
M
MRXLT 已提交
115 116
      for (int j = 0; j < in->at(idx).shape.size(); ++j) {
        cap *= in->at(idx).shape[j];
B
barrierye 已提交
117
      }
M
MRXLT 已提交
118
      if (in->at(idx).dtype == paddle::PaddleDType::INT64) {
M
MRXLT 已提交
119 120
        VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
                << "].";
M
MRXLT 已提交
121
        int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
B
barrierye 已提交
122
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
123
          FetchInst *fetch_p = output->mutable_insts(0);
M
MRXLT 已提交
124
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
B
barrierye 已提交
125
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
M
MRXLT 已提交
126
                in->at(idx).lod[0][j]);
B
barrierye 已提交
127 128 129
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
130 131
          }
        } else {
B
barrierye 已提交
132 133
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
B
barrierye 已提交
134
            fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[j]);
M
MRXLT 已提交
135 136
          }
        }
M
MRXLT 已提交
137
        VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
B
barrierye 已提交
138
        var_idx++;
M
MRXLT 已提交
139
      } else if (in->at(idx).dtype == paddle::PaddleDType::FLOAT32) {
M
MRXLT 已提交
140 141
        VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
                << "].";
M
MRXLT 已提交
142
        float *data_ptr = static_cast<float *>(in->at(idx).data.data());
B
barrierye 已提交
143
        if (model_config->_is_lod_fetch[idx]) {
B
barrierye 已提交
144
          FetchInst *fetch_p = output->mutable_insts(0);
M
MRXLT 已提交
145
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
B
barrierye 已提交
146
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
M
MRXLT 已提交
147
                in->at(idx).lod[0][j]);
B
barrierye 已提交
148 149 150
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
151 152
          }
        } else {
B
barrierye 已提交
153 154 155
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[j]);
156
          }
157
        }
M
MRXLT 已提交
158
        VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
B
barrierye 已提交
159
        var_idx++;
M
MRXLT 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
      } else if (in->at(idx).dtype == paddle::PaddleDType::INT32) {
        VLOG(2) << "Prepare float var [" << model_config->_fetch_name[idx]
                << "].";
        int32_t *data_ptr = static_cast<int32_t *>(in->at(idx).data.data());
        if (model_config->_is_lod_fetch[idx]) {
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < in->at(idx).lod[0].size(); ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_lod(
                in->at(idx).lod[0][j]);
          }
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_int_data(data_ptr[j]);
          }
        } else {
          FetchInst *fetch_p = output->mutable_insts(0);
          for (int j = 0; j < cap; ++j) {
            fetch_p->mutable_tensor_array(var_idx)->add_int_data(data_ptr[j]);
          }
        }
        VLOG(2) << "fetch var [" << model_config->_fetch_name[idx] << "] ready";
        var_idx++;
181 182 183
      }
    }
  }
G
guru4elephant 已提交
184

185 186
  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
187 188 189 190 191 192
    // TODO(barriery): multi-model profile_time.
    // At present, only the response_op is multi-input, so here we get
    // the profile_time by hard coding. It needs to be replaced with
    // a more elegant way.
    for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
B
barrierye 已提交
193
      VLOG(2) << "p size for input blob: " << input_blob->p_size;
194 195 196 197 198 199 200 201
      int profile_time_idx = -1;
      if (pi == 0) {
        profile_time_idx = 0;
      } else {
        profile_time_idx = input_blob->p_size - 2;
      }
      for (; profile_time_idx < input_blob->p_size; ++profile_time_idx) {
        res->add_profile_time(input_blob->time_stamp[profile_time_idx]);
B
barrierye 已提交
202
      }
203 204 205 206
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
G
guru4elephant 已提交
207 208
  }

209 210
  return 0;
}
211 212

DEFINE_OP(GeneralResponseOp);
213 214 215 216

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu