general_response_op.cpp 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

M
MRXLT 已提交
15
#include "core/general-server/op/general_response_op.h"
16 17 18 19
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
20
#include "core/general-server/op/general_infer_helper.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
B
barrierye 已提交
36
using baidu::paddle_serving::predictor::general_model::ModelOutput;
37 38 39
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

40
int GeneralResponseOp::inference() {
B
barrierye 已提交
41 42
  const std::vector<std::string> pre_node_names = pre_names();
  VLOG(2) << "pre node names size: " << pre_node_names.size();
B
barrierye 已提交
43
  
44
  const Request *req = dynamic_cast<const Request *>(get_request_message());
B
barrierye 已提交
45 46
  // response inst with only fetch_var_names
  Response *res = mutable_data<Response>();
47

G
guru4elephant 已提交
48
  Timer timeline;
B
barrierye 已提交
49
  // double response_time = 0.0;
G
guru4elephant 已提交
50 51 52
  // timeline.Start();
  int64_t start = timeline.TimeStampUS();

53 54 55
  VLOG(2) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();
M
MRXLT 已提交
56

57 58 59 60 61 62 63 64 65 66
  VLOG(2) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

  std::vector<int> fetch_index;
  fetch_index.resize(req->fetch_var_names_size());
  for (int i = 0; i < req->fetch_var_names_size(); ++i) {
    fetch_index[i] =
        model_config->_fetch_alias_name_to_index[req->fetch_var_names(i)];
  }
M
MRXLT 已提交
67

B
barrierye 已提交
68
  const GeneralBlob *input_blob;
B
barrierye 已提交
69 70 71
  for (uint32_t pi = 0; pi < pre_node_names.size(); ++pi) {
    VLOG(2) << "pre names[" << pi << "]: "
            << pre_node_names[pi] << " ("
B
barrierye 已提交
72
            << pre_node_names.size() << ")";
B
barrierye 已提交
73 74
    input_blob = get_depend_argument<GeneralBlob>(pre_node_names[pi]);
    fprintf(stderr, "input(%s) blob address %x\n", pre_node_names[pi].c_str(), input_blob);
B
barrierye 已提交
75
    if (!input_blob) {
B
barrierye 已提交
76
      LOG(ERROR) << "Failed mutable depended argument, op: " << pre_node_names[pi];
B
barrierye 已提交
77 78
      return -1;
    }
79

B
barrierye 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    const TensorVector *in = &input_blob->tensor_vector;
    int batch_size = input_blob->GetBatchSize();
    VLOG(2) << "input batch size: " << batch_size;

    ModelOutput *output = res->add_outputs();
    for (int i = 0; i < batch_size; ++i) {
      FetchInst *fetch_inst = output->add_insts();
      for (auto &idx : fetch_index) {
        Tensor *tensor = fetch_inst->add_tensor_array();
        // currently only response float tensor or lod_tensor
        tensor->set_elem_type(1);
        if (model_config->_is_lod_fetch[idx]) {
          VLOG(2) << "out[" << idx << " is lod_tensor";
          tensor->add_shape(-1);
        } else {
          VLOG(2) << "out[" << idx << "] is tensor";
          for (int k = 1; k < in->at(idx).shape.size(); ++k) {
            VLOG(2) << "shape[" << k - 1 << "]: " << in->at(idx).shape[k];
            tensor->add_shape(in->at(idx).shape[k]);
          }
100 101 102 103
        }
      }
    }

B
barrierye 已提交
104 105 106 107 108 109 110 111 112
    int var_idx = 0;
    for (auto &idx : fetch_index) {
      int cap = 1;
      for (int j = 1; j < in->at(idx).shape.size(); ++j) {
        cap *= in->at(idx).shape[j];
      }
      if (in->at(idx).dtype == paddle::PaddleDType::INT64) {
        int64_t *data_ptr = static_cast<int64_t *>(in->at(idx).data.data());
        if (model_config->_is_lod_fetch[idx]) {
113
          for (int j = 0; j < batch_size; ++j) {
B
barrierye 已提交
114 115 116 117
            for (int k = in->at(idx).lod[0][j]; k < in->at(idx).lod[0][j + 1];
                 k++) {
              FetchInst *fetch_p = output->mutable_insts(j);
              fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[k]);
118 119 120
            }
          }
        } else {
B
barrierye 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
          int var_size = in->at(idx).shape[0];
          if (var_size == batch_size) {
            for (int j = 0; j < batch_size; ++j) {
              for (int k = j * cap; k < (j + 1) * cap; ++k) {
                FetchInst *fetch_p = output->mutable_insts(j);
                fetch_p->mutable_tensor_array(var_idx)->add_int64_data(
                    data_ptr[k]);
              }
            }
          } else {
            for (int j = 0; j < batch_size; ++j) {
              FetchInst *fetch_p = output->mutable_insts(j);
              fetch_p->mutable_tensor_array(var_idx)->add_int64_data(data_ptr[0]);
            }
M
MRXLT 已提交
135 136
          }
        }
B
barrierye 已提交
137 138 139 140
        var_idx++;
      } else if (in->at(idx).dtype == paddle::PaddleDType::FLOAT32) {
        float *data_ptr = static_cast<float *>(in->at(idx).data.data());
        if (model_config->_is_lod_fetch[idx]) {
141
          for (int j = 0; j < batch_size; ++j) {
B
barrierye 已提交
142 143 144 145
            for (int k = in->at(idx).lod[0][j]; k < in->at(idx).lod[0][j + 1];
                 k++) {
              FetchInst *fetch_p = output->mutable_insts(j);
              fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[k]);
146 147 148
            }
          }
        } else {
B
barrierye 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
          int var_size = in->at(idx).shape[0];
          if (var_size == batch_size) {
            for (int j = 0; j < batch_size; ++j) {
              for (int k = j * cap; k < (j + 1) * cap; ++k) {
                FetchInst *fetch_p = output->mutable_insts(j);
                fetch_p->mutable_tensor_array(var_idx)->add_float_data(
                    data_ptr[k]);
              }
            }
          } else {
            for (int j = 0; j < batch_size; ++j) {
              FetchInst *fetch_p = output->mutable_insts(j);
              fetch_p->mutable_tensor_array(var_idx)->add_float_data(data_ptr[0]);
            }
163
          }
164
        }
B
barrierye 已提交
165
        var_idx++;
166 167 168
      }
    }
  }
G
guru4elephant 已提交
169

170 171
  if (req->profile_server()) {
    int64_t end = timeline.TimeStampUS();
B
barrierye 已提交
172 173 174 175 176 177 178
    for (uint32_t i = 0; i< pre_node_names.size(); ++i) {
      input_blob = get_depend_argument<GeneralBlob>(pre_node_names[i]);
      VLOG(2) << "p size for input blob: " << input_blob->p_size;
      ModelOutput* output = res->mutable_outputs(i);
      for (int i = 0; i < input_blob->p_size; ++i) {
        output->add_profile_time(input_blob->time_stamp[i]);
      }
179 180 181 182
    }
    // TODO(guru4elephant): find more elegant way to do this
    res->add_profile_time(start);
    res->add_profile_time(end);
G
guru4elephant 已提交
183 184
  }

185 186
  return 0;
}
187 188

DEFINE_OP(GeneralResponseOp);
189 190 191 192

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu