general_detection_op.cpp 12.1 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/general_detection_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"

/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int GeneralDetectionOp::inference() {
  VLOG(2) << "Going to run inference";
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

H
HexToString 已提交
54
  const GeneralBlob* input_blob = get_depend_argument<GeneralBlob>(pre_name);
H
HexToString 已提交
55 56
  if (!input_blob) {
    LOG(ERROR) << "input_blob is nullptr,error";
H
HexToString 已提交
57
    return -1;
H
HexToString 已提交
58 59 60 61
  }
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;

H
HexToString 已提交
62
  GeneralBlob* output_blob = mutable_data<GeneralBlob>();
H
HexToString 已提交
63 64
  if (!output_blob) {
    LOG(ERROR) << "output_blob is nullptr,error";
H
HexToString 已提交
65
    return -1;
H
HexToString 已提交
66 67 68 69 70 71 72 73 74
  }
  output_blob->SetLogId(log_id);

  if (!input_blob) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
    return -1;
  }

H
HexToString 已提交
75
  const TensorVector* in = &input_blob->tensor_vector;
H
HexToString 已提交
76 77 78 79 80 81 82 83
  TensorVector* out = &output_blob->tensor_vector;

  int batch_size = input_blob->_batch_size;
  VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;

  output_blob->_batch_size = batch_size;

  std::vector<int> input_shape;
H
HexToString 已提交
84
  int in_num = 0;
H
HexToString 已提交
85 86 87
  void* databuf_data = NULL;
  char* databuf_char = NULL;
  size_t databuf_size = 0;
H
HexToString 已提交
88 89 90
  // now only support single string
  char* total_input_ptr = static_cast<char*>(in->at(0).data.data());
  std::string base64str = total_input_ptr;
H
HexToString 已提交
91 92 93 94 95 96 97

  float ratio_h{};
  float ratio_w{};

  cv::Mat img = Base2Mat(base64str);
  cv::Mat srcimg;
  cv::Mat resize_img;
H
HexToString 已提交
98

H
HexToString 已提交
99 100 101 102
  cv::Mat resize_img_rec;
  cv::Mat crop_img;
  img.copyTo(srcimg);

H
HexToString 已提交
103 104 105 106 107
  this->resize_op_.Run(img,
                       resize_img,
                       this->max_side_len_,
                       ratio_h,
                       ratio_w,
H
HexToString 已提交
108 109
                       this->use_tensorrt_);

H
HexToString 已提交
110 111
  this->normalize_op_.Run(
      &resize_img, this->mean_det, this->scale_det, this->is_scale_);
H
HexToString 已提交
112 113 114 115 116 117 118 119 120 121 122 123

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
  this->permute_op_.Run(&resize_img, input.data());

  TensorVector* real_in = new TensorVector();
  if (!real_in) {
    LOG(ERROR) << "real_in is nullptr,error";
    return -1;
  }

  for (int i = 0; i < in->size(); ++i) {
    input_shape = {1, 3, resize_img.rows, resize_img.cols};
H
HexToString 已提交
124 125 126
    in_num = std::accumulate(
        input_shape.begin(), input_shape.end(), 1, std::multiplies<int>());
    databuf_size = in_num * sizeof(float);
H
HexToString 已提交
127 128
    databuf_data = MempoolWrapper::instance().malloc(databuf_size);
    if (!databuf_data) {
H
HexToString 已提交
129 130
      LOG(ERROR) << "Malloc failed, size: " << databuf_size;
      return -1;
H
HexToString 已提交
131
    }
H
HexToString 已提交
132
    memcpy(databuf_data, input.data(), databuf_size);
H
HexToString 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    databuf_char = reinterpret_cast<char*>(databuf_data);
    paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
    paddle::PaddleTensor tensor_in;
    tensor_in.name = in->at(i).name;
    tensor_in.dtype = paddle::PaddleDType::FLOAT32;
    tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
    tensor_in.lod = in->at(i).lod;
    tensor_in.data = paddleBuf;
    real_in->push_back(tensor_in);
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
  timeline.Start();
H
HexToString 已提交
147

H
HexToString 已提交
148 149 150 151 152 153
  if (InferManager::instance().infer(
          engine_name().c_str(), real_in, out, batch_size)) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
    return -1;
  }
H
HexToString 已提交
154 155
  delete real_in;

H
HexToString 已提交
156
  std::vector<int> output_shape;
H
HexToString 已提交
157
  int out_num = 0;
H
HexToString 已提交
158 159 160
  void* databuf_data_out = NULL;
  char* databuf_char_out = NULL;
  size_t databuf_size_out = 0;
H
HexToString 已提交
161 162 163
  // this is special add for PaddleOCR postprecess
  int infer_outnum = out->size();
  for (int k = 0; k < infer_outnum; ++k) {
H
HexToString 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176
    int n2 = out->at(k).shape[2];
    int n3 = out->at(k).shape[3];
    int n = n2 * n3;

    float* out_data = static_cast<float*>(out->at(k).data.data());
    std::vector<float> pred(n, 0.0);
    std::vector<unsigned char> cbuf(n, ' ');

    for (int i = 0; i < n; i++) {
      pred[i] = float(out_data[i]);
      cbuf[i] = (unsigned char)((out_data[i]) * 255);
    }

H
HexToString 已提交
177 178
    cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char*)cbuf.data());
    cv::Mat pred_map(n2, n3, CV_32F, (float*)pred.data());
H
HexToString 已提交
179 180 181 182 183 184

    const double threshold = this->det_db_thresh_ * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
    cv::Mat dilation_map;
H
HexToString 已提交
185 186
    cv::Mat dila_ele =
        cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
H
HexToString 已提交
187
    cv::dilate(bit_map, dilation_map, dila_ele);
H
HexToString 已提交
188 189
    boxes = post_processor_.BoxesFromBitmap(pred_map,
                                            dilation_map,
H
HexToString 已提交
190 191 192 193 194 195 196 197 198 199
                                            this->det_db_box_thresh_,
                                            this->det_db_unclip_ratio_);

    boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);

    for (int i = boxes.size() - 1; i >= 0; i--) {
      crop_img = GetRotateCropImage(img, boxes[i]);

      float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

H
HexToString 已提交
200 201
      this->resize_op_rec.Run(
          crop_img, resize_img_rec, wh_ratio, this->use_tensorrt_);
H
HexToString 已提交
202

H
HexToString 已提交
203 204
      this->normalize_op_.Run(
          &resize_img_rec, this->mean_rec, this->scale_rec, this->is_scale_);
H
HexToString 已提交
205

H
HexToString 已提交
206 207
      std::vector<float> output_rec(
          1 * 3 * resize_img_rec.rows * resize_img_rec.cols, 0.0f);
H
HexToString 已提交
208 209 210 211 212

      this->permute_op_.Run(&resize_img_rec, output_rec.data());

      // Inference.
      output_shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
H
HexToString 已提交
213 214 215
      out_num = std::accumulate(
          output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
      databuf_size_out = out_num * sizeof(float);
H
HexToString 已提交
216 217
      databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
      if (!databuf_data_out) {
H
HexToString 已提交
218 219
        LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
        return -1;
H
HexToString 已提交
220
      }
H
HexToString 已提交
221
      memcpy(databuf_data_out, output_rec.data(), databuf_size_out);
H
HexToString 已提交
222 223 224 225 226 227 228 229 230 231
      databuf_char_out = reinterpret_cast<char*>(databuf_data_out);
      paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
      paddle::PaddleTensor tensor_out;
      tensor_out.name = "image";
      tensor_out.dtype = paddle::PaddleDType::FLOAT32;
      tensor_out.shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
      tensor_out.data = paddleBuf;
      out->push_back(tensor_out);
    }
  }
H
HexToString 已提交
232
  out->erase(out->begin(), out->begin() + infer_outnum);
H
HexToString 已提交
233 234 235 236 237 238 239 240

  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
  return 0;
}

H
HexToString 已提交
241 242 243 244 245 246 247
cv::Mat GeneralDetectionOp::Base2Mat(std::string& base64_data) {
  cv::Mat img;
  std::string s_mat;
  s_mat = base64Decode(base64_data.data(), base64_data.size());
  std::vector<char> base64_img(s_mat.begin(), s_mat.end());
  img = cv::imdecode(base64_img, cv::IMREAD_COLOR);  // CV_LOAD_IMAGE_COLOR
  return img;
H
HexToString 已提交
248 249
}

H
HexToString 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
std::string GeneralDetectionOp::base64Decode(const char* Data, int DataByte) {
  const char
      DecodeTable[] =
          {
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
              62,  // '+'
              0,  0,  0,
              63,                                      // '/'
              52, 53, 54, 55, 56, 57, 58, 59, 60, 61,  // '0'-'9'
              0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,
              8,  9,  10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
              23, 24, 25,  // 'A'-'Z'
              0,  0,  0,  0,  0,  0,  26, 27, 28, 29, 30, 31, 32, 33, 34,
              35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
              50, 51,  // 'a'-'z'
          };

  std::string strDecode;
  int nValue;
  int i = 0;
  while (i < DataByte) {
    if (*Data != '\r' && *Data != '\n') {
      nValue = DecodeTable[*Data++] << 18;
      nValue += DecodeTable[*Data++] << 12;
      strDecode += (nValue & 0x00FF0000) >> 16;
      if (*Data != '=') {
        nValue += DecodeTable[*Data++] << 6;
        strDecode += (nValue & 0x0000FF00) >> 8;
        if (*Data != '=') {
          nValue += DecodeTable[*Data++];
          strDecode += nValue & 0x000000FF;
        }
      }
      i += 4;
    } else  // 回车换行,跳过
    {
      Data++;
      i++;
    }
  }
  return strDecode;
H
HexToString 已提交
293 294
}

H
HexToString 已提交
295 296
cv::Mat GeneralDetectionOp::GetRotateCropImage(
    const cv::Mat& srcimage, std::vector<std::vector<int>> box) {
H
HexToString 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
H
HexToString 已提交
336 337 338
  cv::warpPerspective(img_crop,
                      dst_img,
                      M,
H
HexToString 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

DEFINE_OP(GeneralDetectionOp);

}  // namespace serving
}  // namespace paddle_serving
H
HexToString 已提交
356
}  // namespace baidu