Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
4146a043
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4146a043
编写于
4月 22, 2021
作者:
H
HexToString
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix ocr core dump
上级
d4a7b2a0
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
149 addition
and
147 deletion
+149
-147
core/general-server/op/general_detection_op.cpp
core/general-server/op/general_detection_op.cpp
+105
-102
core/general-server/op/general_reader_op.cpp
core/general-server/op/general_reader_op.cpp
+44
-45
未找到文件。
core/general-server/op/general_detection_op.cpp
浏览文件 @
4146a043
...
...
@@ -22,7 +22,6 @@
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
...
...
@@ -52,18 +51,18 @@ int GeneralDetectionOp::inference() {
}
const
std
::
string
pre_name
=
pre_node_names
[
0
];
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
const
GeneralBlob
*
input_blob
=
get_depend_argument
<
GeneralBlob
>
(
pre_name
);
if
(
!
input_blob
)
{
LOG
(
ERROR
)
<<
"input_blob is nullptr,error"
;
return
-
1
;
return
-
1
;
}
uint64_t
log_id
=
input_blob
->
GetLogId
();
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") Get precedent op name: "
<<
pre_name
;
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
GeneralBlob
*
output_blob
=
mutable_data
<
GeneralBlob
>
();
if
(
!
output_blob
)
{
LOG
(
ERROR
)
<<
"output_blob is nullptr,error"
;
return
-
1
;
return
-
1
;
}
output_blob
->
SetLogId
(
log_id
);
...
...
@@ -73,7 +72,7 @@ int GeneralDetectionOp::inference() {
return
-
1
;
}
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
const
TensorVector
*
in
=
&
input_blob
->
tensor_vector
;
TensorVector
*
out
=
&
output_blob
->
tensor_vector
;
int
batch_size
=
input_blob
->
_batch_size
;
...
...
@@ -81,38 +80,39 @@ int GeneralDetectionOp::inference() {
output_blob
->
_batch_size
=
batch_size
;
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") infer batch size: "
<<
batch_size
;
std
::
vector
<
int
>
input_shape
;
int
in_num
=
0
;
int
in_num
=
0
;
void
*
databuf_data
=
NULL
;
char
*
databuf_char
=
NULL
;
size_t
databuf_size
=
0
;
// now only support single string
char
*
total_input_ptr
=
static_cast
<
char
*>
(
in
->
at
(
0
).
data
.
data
());
std
::
string
base64str
=
total_input_ptr
;
std
::
string
*
input_ptr
=
static_cast
<
std
::
string
*>
(
in
->
at
(
0
).
data
.
data
());
std
::
string
base64str
=
input_ptr
[
0
];
float
ratio_h
{};
float
ratio_w
{};
cv
::
Mat
img
=
Base2Mat
(
base64str
);
cv
::
Mat
srcimg
;
cv
::
Mat
resize_img
;
cv
::
Mat
resize_img_rec
;
cv
::
Mat
crop_img
;
img
.
copyTo
(
srcimg
);
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
max_side_len_
,
ratio_h
,
ratio_w
,
this
->
resize_op_
.
Run
(
img
,
resize_img
,
this
->
max_side_len_
,
ratio_h
,
ratio_w
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_det
,
this
->
scale_det
,
this
->
is_scale_
);
this
->
normalize_op_
.
Run
(
&
resize_img
,
this
->
mean_det
,
this
->
scale_det
,
this
->
is_scale_
);
std
::
vector
<
float
>
input
(
1
*
3
*
resize_img
.
rows
*
resize_img
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img
,
input
.
data
());
TensorVector
*
real_in
=
new
TensorVector
();
if
(
!
real_in
)
{
LOG
(
ERROR
)
<<
"real_in is nullptr,error"
;
...
...
@@ -121,14 +121,15 @@ int GeneralDetectionOp::inference() {
for
(
int
i
=
0
;
i
<
in
->
size
();
++
i
)
{
input_shape
=
{
1
,
3
,
resize_img
.
rows
,
resize_img
.
cols
};
in_num
=
std
::
accumulate
(
input_shape
.
begin
(),
input_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size
=
in_num
*
sizeof
(
float
);
in_num
=
std
::
accumulate
(
input_shape
.
begin
(),
input_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size
=
in_num
*
sizeof
(
float
);
databuf_data
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size
);
if
(
!
databuf_data
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size
;
return
-
1
;
}
memcpy
(
databuf_data
,
input
.
data
(),
databuf_size
);
memcpy
(
databuf_data
,
input
.
data
(),
databuf_size
);
databuf_char
=
reinterpret_cast
<
char
*>
(
databuf_data
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char
,
databuf_size
);
paddle
::
PaddleTensor
tensor_in
;
...
...
@@ -143,21 +144,23 @@ int GeneralDetectionOp::inference() {
Timer
timeline
;
int64_t
start
=
timeline
.
TimeStampUS
();
timeline
.
Start
();
if
(
InferManager
::
instance
().
infer
(
engine_name
().
c_str
(),
real_in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"(logid="
<<
log_id
<<
") Failed do infer in fluid model: "
<<
engine_name
().
c_str
();
return
-
1
;
}
delete
real_in
;
std
::
vector
<
int
>
output_shape
;
int
out_num
=
0
;
int
out_num
=
0
;
void
*
databuf_data_out
=
NULL
;
char
*
databuf_char_out
=
NULL
;
size_t
databuf_size_out
=
0
;
//this is special add for PaddleOCR postprecess
int
infer_outnum
=
out
->
size
();
for
(
int
k
=
0
;
k
<
infer_outnum
;
++
k
)
{
//
this is special add for PaddleOCR postprecess
int
infer_outnum
=
out
->
size
();
for
(
int
k
=
0
;
k
<
infer_outnum
;
++
k
)
{
int
n2
=
out
->
at
(
k
).
shape
[
2
];
int
n3
=
out
->
at
(
k
).
shape
[
3
];
int
n
=
n2
*
n3
;
...
...
@@ -171,17 +174,19 @@ int GeneralDetectionOp::inference() {
cbuf
[
i
]
=
(
unsigned
char
)((
out_data
[
i
])
*
255
);
}
cv
::
Mat
cbuf_map
(
n2
,
n3
,
CV_8UC1
,
(
unsigned
char
*
)
cbuf
.
data
());
cv
::
Mat
pred_map
(
n2
,
n3
,
CV_32F
,
(
float
*
)
pred
.
data
());
cv
::
Mat
cbuf_map
(
n2
,
n3
,
CV_8UC1
,
(
unsigned
char
*
)
cbuf
.
data
());
cv
::
Mat
pred_map
(
n2
,
n3
,
CV_32F
,
(
float
*
)
pred
.
data
());
const
double
threshold
=
this
->
det_db_thresh_
*
255
;
const
double
maxvalue
=
255
;
cv
::
Mat
bit_map
;
cv
::
threshold
(
cbuf_map
,
bit_map
,
threshold
,
maxvalue
,
cv
::
THRESH_BINARY
);
cv
::
Mat
dilation_map
;
cv
::
Mat
dila_ele
=
cv
::
getStructuringElement
(
cv
::
MORPH_RECT
,
cv
::
Size
(
2
,
2
));
cv
::
Mat
dila_ele
=
cv
::
getStructuringElement
(
cv
::
MORPH_RECT
,
cv
::
Size
(
2
,
2
));
cv
::
dilate
(
bit_map
,
dilation_map
,
dila_ele
);
boxes
=
post_processor_
.
BoxesFromBitmap
(
pred_map
,
dilation_map
,
boxes
=
post_processor_
.
BoxesFromBitmap
(
pred_map
,
dilation_map
,
this
->
det_db_box_thresh_
,
this
->
det_db_unclip_ratio_
);
...
...
@@ -192,25 +197,28 @@ int GeneralDetectionOp::inference() {
float
wh_ratio
=
float
(
crop_img
.
cols
)
/
float
(
crop_img
.
rows
);
this
->
resize_op_rec
.
Run
(
crop_img
,
resize_img_rec
,
wh_ratio
,
this
->
use_tensorrt_
);
this
->
resize_op_rec
.
Run
(
crop_img
,
resize_img_rec
,
wh_ratio
,
this
->
use_tensorrt_
);
this
->
normalize_op_
.
Run
(
&
resize_img_rec
,
this
->
mean_rec
,
this
->
scale_rec
,
this
->
is_scale_
);
this
->
normalize_op_
.
Run
(
&
resize_img_rec
,
this
->
mean_rec
,
this
->
scale_rec
,
this
->
is_scale_
);
std
::
vector
<
float
>
output_rec
(
1
*
3
*
resize_img_rec
.
rows
*
resize_img_rec
.
cols
,
0.0
f
);
std
::
vector
<
float
>
output_rec
(
1
*
3
*
resize_img_rec
.
rows
*
resize_img_rec
.
cols
,
0.0
f
);
this
->
permute_op_
.
Run
(
&
resize_img_rec
,
output_rec
.
data
());
// Inference.
output_shape
=
{
1
,
3
,
resize_img_rec
.
rows
,
resize_img_rec
.
cols
};
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size_out
=
out_num
*
sizeof
(
float
);
out_num
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
());
databuf_size_out
=
out_num
*
sizeof
(
float
);
databuf_data_out
=
MempoolWrapper
::
instance
().
malloc
(
databuf_size_out
);
if
(
!
databuf_data_out
)
{
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size_out
;
return
-
1
;
LOG
(
ERROR
)
<<
"Malloc failed, size: "
<<
databuf_size_out
;
return
-
1
;
}
memcpy
(
databuf_data_out
,
output_rec
.
data
(),
databuf_size_out
);
memcpy
(
databuf_data_out
,
output_rec
.
data
(),
databuf_size_out
);
databuf_char_out
=
reinterpret_cast
<
char
*>
(
databuf_data_out
);
paddle
::
PaddleBuf
paddleBuf
(
databuf_char_out
,
databuf_size_out
);
paddle
::
PaddleTensor
tensor_out
;
...
...
@@ -221,9 +229,8 @@ int GeneralDetectionOp::inference() {
out
->
push_back
(
tensor_out
);
}
}
out
->
erase
(
out
->
begin
(),
out
->
begin
()
+
infer_outnum
);
out
->
erase
(
out
->
begin
(),
out
->
begin
()
+
infer_outnum
);
int64_t
end
=
timeline
.
TimeStampUS
();
CopyBlobInfo
(
input_blob
,
output_blob
);
AddBlobInfo
(
output_blob
,
start
);
...
...
@@ -231,68 +238,62 @@ int GeneralDetectionOp::inference() {
return
0
;
}
cv
::
Mat
GeneralDetectionOp
::
Base2Mat
(
std
::
string
&
base64_data
)
{
cv
::
Mat
img
;
std
::
string
s_mat
;
s_mat
=
base64Decode
(
base64_data
.
data
(),
base64_data
.
size
());
std
::
vector
<
char
>
base64_img
(
s_mat
.
begin
(),
s_mat
.
end
());
img
=
cv
::
imdecode
(
base64_img
,
cv
::
IMREAD_COLOR
);
//CV_LOAD_IMAGE_COLOR
return
img
;
cv
::
Mat
GeneralDetectionOp
::
Base2Mat
(
std
::
string
&
base64_data
)
{
cv
::
Mat
img
;
std
::
string
s_mat
;
s_mat
=
base64Decode
(
base64_data
.
data
(),
base64_data
.
size
());
std
::
vector
<
char
>
base64_img
(
s_mat
.
begin
(),
s_mat
.
end
());
img
=
cv
::
imdecode
(
base64_img
,
cv
::
IMREAD_COLOR
);
// CV_LOAD_IMAGE_COLOR
return
img
;
}
std
::
string
GeneralDetectionOp
::
base64Decode
(
const
char
*
Data
,
int
DataByte
)
{
const
char
DecodeTable
[]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
62
,
// '+'
0
,
0
,
0
,
63
,
// '/'
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
// '0'-'9'
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
// 'A'-'Z'
0
,
0
,
0
,
0
,
0
,
0
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
// 'a'-'z'
};
std
::
string
strDecode
;
int
nValue
;
int
i
=
0
;
while
(
i
<
DataByte
)
{
if
(
*
Data
!=
'\r'
&&
*
Data
!=
'\n'
)
{
nValue
=
DecodeTable
[
*
Data
++
]
<<
18
;
nValue
+=
DecodeTable
[
*
Data
++
]
<<
12
;
strDecode
+=
(
nValue
&
0x00FF0000
)
>>
16
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
]
<<
6
;
strDecode
+=
(
nValue
&
0x0000FF00
)
>>
8
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
];
strDecode
+=
nValue
&
0x000000FF
;
}
}
i
+=
4
;
}
else
// 回车换行,跳过
{
Data
++
;
i
++
;
}
}
return
strDecode
;
std
::
string
GeneralDetectionOp
::
base64Decode
(
const
char
*
Data
,
int
DataByte
)
{
const
char
DecodeTable
[]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
62
,
// '+'
0
,
0
,
0
,
63
,
// '/'
52
,
53
,
54
,
55
,
56
,
57
,
58
,
59
,
60
,
61
,
// '0'-'9'
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
// 'A'-'Z'
0
,
0
,
0
,
0
,
0
,
0
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40
,
41
,
42
,
43
,
44
,
45
,
46
,
47
,
48
,
49
,
50
,
51
,
// 'a'-'z'
};
std
::
string
strDecode
;
int
nValue
;
int
i
=
0
;
while
(
i
<
DataByte
)
{
if
(
*
Data
!=
'\r'
&&
*
Data
!=
'\n'
)
{
nValue
=
DecodeTable
[
*
Data
++
]
<<
18
;
nValue
+=
DecodeTable
[
*
Data
++
]
<<
12
;
strDecode
+=
(
nValue
&
0x00FF0000
)
>>
16
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
]
<<
6
;
strDecode
+=
(
nValue
&
0x0000FF00
)
>>
8
;
if
(
*
Data
!=
'='
)
{
nValue
+=
DecodeTable
[
*
Data
++
];
strDecode
+=
nValue
&
0x000000FF
;
}
}
i
+=
4
;
}
else
// 回车换行,跳过
{
Data
++
;
i
++
;
}
}
return
strDecode
;
}
cv
::
Mat
GeneralDetectionOp
::
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
)
{
cv
::
Mat
GeneralDetectionOp
::
GetRotateCropImage
(
const
cv
::
Mat
&
srcimage
,
std
::
vector
<
std
::
vector
<
int
>>
box
)
{
cv
::
Mat
image
;
srcimage
.
copyTo
(
image
);
std
::
vector
<
std
::
vector
<
int
>>
points
=
box
;
...
...
@@ -332,7 +333,9 @@ cv::Mat GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage,
cv
::
Mat
M
=
cv
::
getPerspectiveTransform
(
pointsf
,
pts_std
);
cv
::
Mat
dst_img
;
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
warpPerspective
(
img_crop
,
dst_img
,
M
,
cv
::
Size
(
img_crop_width
,
img_crop_height
),
cv
::
BORDER_REPLICATE
);
...
...
@@ -350,4 +353,4 @@ DEFINE_OP(GeneralDetectionOp);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
\ No newline at end of file
}
// namespace baidu
core/general-server/op/general_reader_op.cpp
浏览文件 @
4146a043
...
...
@@ -77,9 +77,6 @@ int GeneralReaderOp::inference() {
uint64_t
log_id
=
req
->
log_id
();
int
input_var_num
=
0
;
std
::
vector
<
int64_t
>
elem_type
;
std
::
vector
<
int64_t
>
elem_size
;
std
::
vector
<
int64_t
>
databuf_size
;
GeneralBlob
*
res
=
mutable_data
<
GeneralBlob
>
();
if
(
!
res
)
{
...
...
@@ -119,40 +116,44 @@ int GeneralReaderOp::inference() {
}
*/
// package tensor
elem_type
.
resize
(
var_num
);
elem_size
.
resize
(
var_num
);
databuf_size
.
resize
(
var_num
);
// prepare basic information for input
// specify the memory needed for output tensor_vector
// fill the data into output general_blob
int
data_len
=
0
;
int64_t
elem_type
=
0
;
int64_t
elem_size
=
0
;
int64_t
databuf_size
=
0
;
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
paddle
::
PaddleTensor
lod_t
ensor
;
paddle
::
PaddleTensor
paddleT
ensor
;
const
Tensor
&
tensor
=
req
->
insts
(
0
).
tensor_array
(
i
);
data_len
=
0
;
elem_type
[
i
]
=
tensor
.
elem_type
();
VLOG
(
2
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
if
(
elem_type
[
i
]
==
P_INT64
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
elem_type
=
0
;
elem_size
=
0
;
databuf_size
=
0
;
elem_type
=
tensor
.
elem_type
();
VLOG
(
2
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
;
if
(
elem_type
==
P_INT64
)
{
// int64
elem_size
=
sizeof
(
int64_t
);
paddleTensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
data_len
=
tensor
.
int64_data_size
();
}
else
if
(
elem_type
[
i
]
==
P_FLOAT32
)
{
elem_size
[
i
]
=
sizeof
(
float
);
lod_t
ensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
}
else
if
(
elem_type
==
P_FLOAT32
)
{
elem_size
=
sizeof
(
float
);
paddleT
ensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
data_len
=
tensor
.
float_data_size
();
}
else
if
(
elem_type
[
i
]
==
P_INT32
)
{
elem_size
[
i
]
=
sizeof
(
int32_t
);
lod_t
ensor
.
dtype
=
paddle
::
PaddleDType
::
INT32
;
}
else
if
(
elem_type
==
P_INT32
)
{
elem_size
=
sizeof
(
int32_t
);
paddleT
ensor
.
dtype
=
paddle
::
PaddleDType
::
INT32
;
data_len
=
tensor
.
int_data_size
();
}
else
if
(
elem_type
[
i
]
==
P_STRING
)
{
}
else
if
(
elem_type
==
P_STRING
)
{
// use paddle::PaddleDType::UINT8 as for String.
elem_size
[
i
]
=
sizeof
(
uint8_t
);
lod_t
ensor
.
dtype
=
paddle
::
PaddleDType
::
UINT8
;
elem_size
=
sizeof
(
char
);
paddleT
ensor
.
dtype
=
paddle
::
PaddleDType
::
UINT8
;
// this is for vector<String>, cause the databuf_size !=
// vector<String>.size()*sizeof(char);
// data_len should be +1 cause '\0'
// now only support single string
for
(
int
idx
=
0
;
idx
<
tensor
.
data_size
();
idx
++
)
{
data_len
+=
tensor
.
data
()[
idx
].
length
();
data_len
+=
tensor
.
data
()[
idx
].
length
()
+
1
;
}
}
// implement lod tensor here
...
...
@@ -160,29 +161,29 @@ int GeneralReaderOp::inference() {
// TODO(HexToString): support 2-D lod
if
(
tensor
.
lod_size
()
>
0
)
{
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] is lod_tensor"
;
lod_t
ensor
.
lod
.
resize
(
1
);
paddleT
ensor
.
lod
.
resize
(
1
);
for
(
int
k
=
0
;
k
<
tensor
.
lod_size
();
++
k
)
{
lod_t
ensor
.
lod
[
0
].
push_back
(
tensor
.
lod
(
k
));
paddleT
ensor
.
lod
[
0
].
push_back
(
tensor
.
lod
(
k
));
}
}
for
(
int
k
=
0
;
k
<
tensor
.
shape_size
();
++
k
)
{
int
dim
=
tensor
.
shape
(
k
);
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") shape for var["
<<
i
<<
"]: "
<<
dim
;
lod_t
ensor
.
shape
.
push_back
(
dim
);
paddleT
ensor
.
shape
.
push_back
(
dim
);
}
lod_t
ensor
.
name
=
model_config
->
_feed_name
[
i
];
out
->
push_back
(
lod_t
ensor
);
paddleT
ensor
.
name
=
model_config
->
_feed_name
[
i
];
out
->
push_back
(
paddleT
ensor
);
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") tensor size for var["
<<
i
<<
"]: "
<<
data_len
;
databuf_size
[
i
]
=
data_len
*
elem_size
[
i
]
;
out
->
at
(
i
).
data
.
Resize
(
data
_len
*
elem_size
[
i
]
);
databuf_size
=
data_len
*
elem_size
;
out
->
at
(
i
).
data
.
Resize
(
data
buf_size
);
if
(
out
->
at
(
i
).
lod
.
size
()
>
0
)
{
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") var["
<<
i
<<
"] has lod_tensor and len="
<<
out
->
at
(
i
).
lod
[
0
].
back
();
}
if
(
elem_type
[
i
]
==
P_INT64
)
{
if
(
elem_type
==
P_INT64
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
tensor
.
int64_data
(
0
);
...
...
@@ -190,14 +191,14 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
memcpy
(
dst_ptr
,
tensor
.
int64_data
().
data
(),
databuf_size
[
i
]
);
memcpy
(
dst_ptr
,
tensor
.
int64_data
().
data
(),
databuf_size
);
/*
int elem_num = tensor.int64_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = tensor.int64_data(k);
}
*/
}
else
if
(
elem_type
[
i
]
==
P_FLOAT32
)
{
}
else
if
(
elem_type
==
P_FLOAT32
)
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
tensor
.
float_data
(
0
);
...
...
@@ -205,12 +206,12 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
memcpy
(
dst_ptr
,
tensor
.
float_data
().
data
(),
databuf_size
[
i
]
);
memcpy
(
dst_ptr
,
tensor
.
float_data
().
data
(),
databuf_size
);
/*int elem_num = tensor.float_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = tensor.float_data(k);
}*/
}
else
if
(
elem_type
[
i
]
==
P_INT32
)
{
}
else
if
(
elem_type
==
P_INT32
)
{
int32_t
*
dst_ptr
=
static_cast
<
int32_t
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
tensor
.
int_data
(
0
);
...
...
@@ -218,15 +219,9 @@ int GeneralReaderOp::inference() {
LOG
(
ERROR
)
<<
"dst_ptr is nullptr"
;
return
-
1
;
}
memcpy
(
dst_ptr
,
tensor
.
int_data
().
data
(),
databuf_size
[
i
]);
/*
int elem_num = tensor.int_data_size();
for (int k = 0; k < elem_num; ++k) {
dst_ptr[k] = tensor.int_data(k);
}
*/
}
else
if
(
elem_type
[
i
]
==
P_STRING
)
{
std
::
string
*
dst_ptr
=
static_cast
<
std
::
string
*>
(
out
->
at
(
i
).
data
.
data
());
memcpy
(
dst_ptr
,
tensor
.
int_data
().
data
(),
databuf_size
);
}
else
if
(
elem_type
==
P_STRING
)
{
char
*
dst_ptr
=
static_cast
<
char
*>
(
out
->
at
(
i
).
data
.
data
());
VLOG
(
2
)
<<
"(logid="
<<
log_id
<<
") first element data in var["
<<
i
<<
"] is "
<<
tensor
.
data
(
0
);
if
(
!
dst_ptr
)
{
...
...
@@ -234,8 +229,12 @@ int GeneralReaderOp::inference() {
return
-
1
;
}
int
elem_num
=
tensor
.
data_size
();
int
offset
=
0
;
for
(
int
k
=
0
;
k
<
elem_num
;
++
k
)
{
dst_ptr
[
k
]
=
tensor
.
data
(
k
);
memcpy
(
dst_ptr
+
offset
,
tensor
.
data
(
k
).
c_str
(),
strlen
(
tensor
.
data
(
k
).
c_str
())
+
1
);
offset
+=
strlen
(
tensor
.
data
(
k
).
c_str
())
+
1
;
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录