// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/general-server/op/general_detection_op.h" #include #include #include #include #include "core/predictor/framework/infer.h" #include "core/predictor/framework/memory.h" #include "core/predictor/framework/resource.h" #include "core/util/include/timer.h" /* #include "opencv2/imgcodecs/legacy/constants_c.h" #include "opencv2/imgproc/types_c.h" */ namespace baidu { namespace paddle_serving { namespace serving { using baidu::paddle_serving::Timer; using baidu::paddle_serving::predictor::MempoolWrapper; using baidu::paddle_serving::predictor::general_model::Tensor; using baidu::paddle_serving::predictor::general_model::Response; using baidu::paddle_serving::predictor::general_model::Request; using baidu::paddle_serving::predictor::general_model::FetchInst; using baidu::paddle_serving::predictor::InferManager; using baidu::paddle_serving::predictor::PaddleGeneralModelConfig; int GeneralDetectionOp::inference() { VLOG(2) << "Going to run inference"; const std::vector pre_node_names = pre_names(); if (pre_node_names.size() != 1) { LOG(ERROR) << "This op(" << op_name() << ") can only have one predecessor op, but received " << pre_node_names.size(); return -1; } const std::string pre_name = pre_node_names[0]; const GeneralBlob* input_blob = get_depend_argument(pre_name); if (!input_blob) { LOG(ERROR) << "input_blob is nullptr,error"; return -1; } uint64_t log_id = input_blob->GetLogId(); VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name; GeneralBlob* output_blob = mutable_data(); if (!output_blob) { LOG(ERROR) << "output_blob is nullptr,error"; return -1; } output_blob->SetLogId(log_id); if (!input_blob) { LOG(ERROR) << "(logid=" << log_id << ") Failed mutable depended argument, op:" << pre_name; return -1; } const TensorVector* in = &input_blob->tensor_vector; TensorVector* out = &output_blob->tensor_vector; int batch_size = input_blob->_batch_size; VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size; output_blob->_batch_size = batch_size; std::vector input_shape; int in_num = 0; void* databuf_data = NULL; char* databuf_char = NULL; size_t databuf_size = 0; // now only support single string char* total_input_ptr = static_cast(in->at(0).data.data()); std::string base64str = total_input_ptr; float ratio_h{}; float ratio_w{}; cv::Mat img = Base2Mat(base64str); cv::Mat srcimg; cv::Mat resize_img; cv::Mat resize_img_rec; cv::Mat crop_img; img.copyTo(srcimg); this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w, this->use_tensorrt_); this->normalize_op_.Run( &resize_img, this->mean_det, this->scale_det, this->is_scale_); std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); this->permute_op_.Run(&resize_img, input.data()); TensorVector* real_in = new TensorVector(); if (!real_in) { LOG(ERROR) << "real_in is nullptr,error"; return -1; } for (int i = 0; i < in->size(); ++i) { input_shape = {1, 3, resize_img.rows, resize_img.cols}; in_num = std::accumulate( input_shape.begin(), input_shape.end(), 1, std::multiplies()); databuf_size = in_num * sizeof(float); databuf_data = MempoolWrapper::instance().malloc(databuf_size); if (!databuf_data) { LOG(ERROR) << "Malloc failed, size: " << databuf_size; return -1; } memcpy(databuf_data, input.data(), databuf_size); databuf_char = reinterpret_cast(databuf_data); paddle::PaddleBuf paddleBuf(databuf_char, databuf_size); paddle::PaddleTensor tensor_in; tensor_in.name = in->at(i).name; tensor_in.dtype = paddle::PaddleDType::FLOAT32; tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols}; tensor_in.lod = in->at(i).lod; tensor_in.data = paddleBuf; real_in->push_back(tensor_in); } Timer timeline; int64_t start = timeline.TimeStampUS(); timeline.Start(); if (InferManager::instance().infer( engine_name().c_str(), real_in, out, batch_size)) { LOG(ERROR) << "(logid=" << log_id << ") Failed do infer in fluid model: " << engine_name().c_str(); return -1; } delete real_in; std::vector output_shape; int out_num = 0; void* databuf_data_out = NULL; char* databuf_char_out = NULL; size_t databuf_size_out = 0; // this is special add for PaddleOCR postprecess int infer_outnum = out->size(); for (int k = 0; k < infer_outnum; ++k) { int n2 = out->at(k).shape[2]; int n3 = out->at(k).shape[3]; int n = n2 * n3; float* out_data = static_cast(out->at(k).data.data()); std::vector pred(n, 0.0); std::vector cbuf(n, ' '); for (int i = 0; i < n; i++) { pred[i] = float(out_data[i]); cbuf[i] = (unsigned char)((out_data[i]) * 255); } cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char*)cbuf.data()); cv::Mat pred_map(n2, n3, CV_32F, (float*)pred.data()); const double threshold = this->det_db_thresh_ * 255; const double maxvalue = 255; cv::Mat bit_map; cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY); cv::Mat dilation_map; cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2)); cv::dilate(bit_map, dilation_map, dila_ele); boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_); boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg); for (int i = boxes.size() - 1; i >= 0; i--) { crop_img = GetRotateCropImage(img, boxes[i]); float wh_ratio = float(crop_img.cols) / float(crop_img.rows); this->resize_op_rec.Run( crop_img, resize_img_rec, wh_ratio, this->use_tensorrt_); this->normalize_op_.Run( &resize_img_rec, this->mean_rec, this->scale_rec, this->is_scale_); std::vector output_rec( 1 * 3 * resize_img_rec.rows * resize_img_rec.cols, 0.0f); this->permute_op_.Run(&resize_img_rec, output_rec.data()); // Inference. output_shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols}; out_num = std::accumulate( output_shape.begin(), output_shape.end(), 1, std::multiplies()); databuf_size_out = out_num * sizeof(float); databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out); if (!databuf_data_out) { LOG(ERROR) << "Malloc failed, size: " << databuf_size_out; return -1; } memcpy(databuf_data_out, output_rec.data(), databuf_size_out); databuf_char_out = reinterpret_cast(databuf_data_out); paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out); paddle::PaddleTensor tensor_out; tensor_out.name = "image"; tensor_out.dtype = paddle::PaddleDType::FLOAT32; tensor_out.shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols}; tensor_out.data = paddleBuf; out->push_back(tensor_out); } } out->erase(out->begin(), out->begin() + infer_outnum); int64_t end = timeline.TimeStampUS(); CopyBlobInfo(input_blob, output_blob); AddBlobInfo(output_blob, start); AddBlobInfo(output_blob, end); return 0; } cv::Mat GeneralDetectionOp::Base2Mat(std::string& base64_data) { cv::Mat img; std::string s_mat; s_mat = base64Decode(base64_data.data(), base64_data.size()); std::vector base64_img(s_mat.begin(), s_mat.end()); img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR return img; } std::string GeneralDetectionOp::base64Decode(const char* Data, int DataByte) { const char DecodeTable[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, // '+' 0, 0, 0, 63, // '/' 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9' 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z' 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z' }; std::string strDecode; int nValue; int i = 0; while (i < DataByte) { if (*Data != '\r' && *Data != '\n') { nValue = DecodeTable[*Data++] << 18; nValue += DecodeTable[*Data++] << 12; strDecode += (nValue & 0x00FF0000) >> 16; if (*Data != '=') { nValue += DecodeTable[*Data++] << 6; strDecode += (nValue & 0x0000FF00) >> 8; if (*Data != '=') { nValue += DecodeTable[*Data++]; strDecode += nValue & 0x000000FF; } } i += 4; } else // 回车换行,跳过 { Data++; i++; } } return strDecode; } cv::Mat GeneralDetectionOp::GetRotateCropImage( const cv::Mat& srcimage, std::vector> box) { cv::Mat image; srcimage.copyTo(image); std::vector> points = box; int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]}; int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]}; int left = int(*std::min_element(x_collect, x_collect + 4)); int right = int(*std::max_element(x_collect, x_collect + 4)); int top = int(*std::min_element(y_collect, y_collect + 4)); int bottom = int(*std::max_element(y_collect, y_collect + 4)); cv::Mat img_crop; image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop); for (int i = 0; i < points.size(); i++) { points[i][0] -= left; points[i][1] -= top; } int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) + pow(points[0][1] - points[1][1], 2))); int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) + pow(points[0][1] - points[3][1], 2))); cv::Point2f pts_std[4]; pts_std[0] = cv::Point2f(0., 0.); pts_std[1] = cv::Point2f(img_crop_width, 0.); pts_std[2] = cv::Point2f(img_crop_width, img_crop_height); pts_std[3] = cv::Point2f(0.f, img_crop_height); cv::Point2f pointsf[4]; pointsf[0] = cv::Point2f(points[0][0], points[0][1]); pointsf[1] = cv::Point2f(points[1][0], points[1][1]); pointsf[2] = cv::Point2f(points[2][0], points[2][1]); pointsf[3] = cv::Point2f(points[3][0], points[3][1]); cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std); cv::Mat dst_img; cv::warpPerspective(img_crop, dst_img, M, cv::Size(img_crop_width, img_crop_height), cv::BORDER_REPLICATE); if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) { cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth()); cv::transpose(dst_img, srcCopy); cv::flip(srcCopy, srcCopy, 0); return srcCopy; } else { return dst_img; } } DEFINE_OP(GeneralDetectionOp); } // namespace serving } // namespace paddle_serving } // namespace baidu