general_detection_op.cpp 11.6 KB
Newer Older
H
HexToString 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/general_detection_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"


/*
#include "opencv2/imgcodecs/legacy/constants_c.h"
#include "opencv2/imgproc/types_c.h"
*/

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int GeneralDetectionOp::inference() {
  VLOG(2) << "Going to run inference";
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

  const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
  if (!input_blob) {
    LOG(ERROR) << "input_blob is nullptr,error";
      return -1;
  }
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;

  GeneralBlob *output_blob = mutable_data<GeneralBlob>();
  if (!output_blob) {
    LOG(ERROR) << "output_blob is nullptr,error";
      return -1;
  }
  output_blob->SetLogId(log_id);

  if (!input_blob) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
    return -1;
  }

  const TensorVector *in = &input_blob->tensor_vector;
  TensorVector* out = &output_blob->tensor_vector;

  int batch_size = input_blob->_batch_size;
  VLOG(2) << "(logid=" << log_id << ") input batch size: " << batch_size;

  output_blob->_batch_size = batch_size;

  VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;

  std::vector<int> input_shape;
  int in_num =0;
  void* databuf_data = NULL;
  char* databuf_char = NULL;
  size_t databuf_size = 0;

  std::string* input_ptr = static_cast<std::string*>(in->at(0).data.data());
  std::string base64str = input_ptr[0];
  float ratio_h{};
  float ratio_w{};

  
  cv::Mat img = Base2Mat(base64str);
  cv::Mat srcimg;
  cv::Mat resize_img;
  
  cv::Mat resize_img_rec;
  cv::Mat crop_img;
  img.copyTo(srcimg);

  this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
                       this->use_tensorrt_);

  this->normalize_op_.Run(&resize_img, this->mean_det, this->scale_det,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
  this->permute_op_.Run(&resize_img, input.data());


  TensorVector* real_in = new TensorVector();
  if (!real_in) {
    LOG(ERROR) << "real_in is nullptr,error";
    return -1;
  }

  for (int i = 0; i < in->size(); ++i) {
    input_shape = {1, 3, resize_img.rows, resize_img.cols};
    in_num = std::accumulate(input_shape.begin(), input_shape.end(), 1, std::multiplies<int>());
    databuf_size = in_num*sizeof(float);
    databuf_data = MempoolWrapper::instance().malloc(databuf_size);
    if (!databuf_data) {
        LOG(ERROR) << "Malloc failed, size: " << databuf_size;
        return -1;
    }
    memcpy(databuf_data,input.data(),databuf_size);
    databuf_char = reinterpret_cast<char*>(databuf_data);
    paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
    paddle::PaddleTensor tensor_in;
    tensor_in.name = in->at(i).name;
    tensor_in.dtype = paddle::PaddleDType::FLOAT32;
    tensor_in.shape = {1, 3, resize_img.rows, resize_img.cols};
    tensor_in.lod = in->at(i).lod;
    tensor_in.data = paddleBuf;
    real_in->push_back(tensor_in);
  }

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
  timeline.Start();
  
  if (InferManager::instance().infer(
          engine_name().c_str(), real_in, out, batch_size)) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
    return -1;
  }
  std::vector<int> output_shape;
  int out_num =0;
  void* databuf_data_out = NULL;
  char* databuf_char_out = NULL;
  size_t databuf_size_out = 0;
  //this is special add for PaddleOCR postprecess
  int infer_outnum =  out->size();
  for (int k = 0;k <infer_outnum; ++k) {
    int n2 = out->at(k).shape[2];
    int n3 = out->at(k).shape[3];
    int n = n2 * n3;

    float* out_data = static_cast<float*>(out->at(k).data.data());
    std::vector<float> pred(n, 0.0);
    std::vector<unsigned char> cbuf(n, ' ');

    for (int i = 0; i < n; i++) {
      pred[i] = float(out_data[i]);
      cbuf[i] = (unsigned char)((out_data[i]) * 255);
    }

    cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
    cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());

    const double threshold = this->det_db_thresh_ * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
    cv::Mat dilation_map;
    cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
    cv::dilate(bit_map, dilation_map, dila_ele);
    boxes = post_processor_.BoxesFromBitmap(pred_map, dilation_map,
                                            this->det_db_box_thresh_,
                                            this->det_db_unclip_ratio_);

    boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);

    for (int i = boxes.size() - 1; i >= 0; i--) {
      crop_img = GetRotateCropImage(img, boxes[i]);

      float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

      this->resize_op_rec.Run(crop_img, resize_img_rec, wh_ratio, this->use_tensorrt_);

      this->normalize_op_.Run(&resize_img_rec, this->mean_rec, this->scale_rec,
                              this->is_scale_);

      std::vector<float> output_rec(1 * 3 * resize_img_rec.rows * resize_img_rec.cols, 0.0f);

      this->permute_op_.Run(&resize_img_rec, output_rec.data());

      // Inference.
      output_shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
      out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies<int>());
      databuf_size_out = out_num*sizeof(float);
      databuf_data_out = MempoolWrapper::instance().malloc(databuf_size_out);
      if (!databuf_data_out) {
          LOG(ERROR) << "Malloc failed, size: " << databuf_size_out;
          return -1;
      }
      memcpy(databuf_data_out,output_rec.data(),databuf_size_out);
      databuf_char_out = reinterpret_cast<char*>(databuf_data_out);
      paddle::PaddleBuf paddleBuf(databuf_char_out, databuf_size_out);
      paddle::PaddleTensor tensor_out;
      tensor_out.name = "image";
      tensor_out.dtype = paddle::PaddleDType::FLOAT32;
      tensor_out.shape = {1, 3, resize_img_rec.rows, resize_img_rec.cols};
      tensor_out.data = paddleBuf;
      out->push_back(tensor_out);
    }
  }
  out->erase(out->begin(),out->begin()+infer_outnum);

  
  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
  return 0;
}

cv::Mat GeneralDetectionOp::Base2Mat(std::string &base64_data)
{
	cv::Mat img;
	std::string s_mat;
	s_mat = base64Decode(base64_data.data(), base64_data.size());
	std::vector<char> base64_img(s_mat.begin(), s_mat.end());
	img = cv::imdecode(base64_img, cv::IMREAD_COLOR);//CV_LOAD_IMAGE_COLOR
	return img;
}

std::string GeneralDetectionOp::base64Decode(const char* Data, int DataByte)
{

	const char DecodeTable[] =
	{
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		62, // '+'
		0, 0, 0,
		63, // '/'
		52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
		0, 0, 0, 0, 0, 0, 0,
		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
		13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
		0, 0, 0, 0, 0, 0,
		26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
		39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
	};

	std::string strDecode;
	int nValue;
	int i = 0;
	while (i < DataByte)
	{
		if (*Data != '\r' && *Data != '\n')
		{
			nValue = DecodeTable[*Data++] << 18;
			nValue += DecodeTable[*Data++] << 12;
			strDecode += (nValue & 0x00FF0000) >> 16;
			if (*Data != '=')
			{
				nValue += DecodeTable[*Data++] << 6;
				strDecode += (nValue & 0x0000FF00) >> 8;
				if (*Data != '=')
				{
					nValue += DecodeTable[*Data++];
					strDecode += nValue & 0x000000FF;
				}
			}
			i += 4;
		}
		else// 回车换行,跳过
		{
			Data++;
			i++;
		}
	}
	return strDecode;
}

cv::Mat GeneralDetectionOp::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

DEFINE_OP(GeneralDetectionOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu