bsf.h 44.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16 17

#include <errno.h>
W
wangguibao 已提交
18
#include <algorithm>
H
HexToString 已提交
19
#include <cstring>
H
HexToString 已提交
20
#include <list>
H
HexToString 已提交
21
#include <set>
W
wangguibao 已提交
22
#include <vector>
W
wangguibao 已提交
23 24 25 26

#ifdef BCLOUD
#include "base/atomicops.h"
#else
W
wangguibao 已提交
27
#include "butil/atomicops.h"
W
wangguibao 已提交
28 29
#endif

G
guru4elephant 已提交
30
#include "core/predictor/common/inner_common.h"
W
wangguibao 已提交
31

W
wangguibao 已提交
32
#include "boost/function.hpp"
W
wangguibao 已提交
33

34 35 36
#include "core/predictor/framework/memory.h"
#include "paddle_inference_api.h"

W
wangguibao 已提交
37 38 39 40
namespace im {
namespace bsf {

static const size_t DEFAULT_BATCH_SIZE = 100;
B
bjjwwang 已提交
41 42
typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
typedef baidu::paddle_serving::predictor::MempoolRegion MempoolRegion;
W
wangguibao 已提交
43

44 45 46 47 48 49 50 51 52
// InItemT is paddle::PaddleTensor
// InVectorT std::vector<paddle::PaddleTensor>
// InVectorT means different feedvar, but not batch.
// Batch is already inside the  paddle::PaddleTensor.

// size_t `rem` records how many batch have not been put in BatchTasks.
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
H
HexToString 已提交
53 54
template <typename TaskT>
class BatchTasks;
55 56
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
W
wangguibao 已提交
57
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
58
struct Task {
59 60
  typedef std::vector<InItemT> InVectorT;
  typedef std::vector<OutItemT> OutVectorT;
W
wangguibao 已提交
61 62 63
  typedef InItemT InType;
  typedef OutItemT OutType;
  typedef Task<InItemT, OutItemT> TaskT;
H
HexToString 已提交
64
  typedef std::vector<size_t> ShapeVector;
65
  typedef std::vector<ShapeVector> VectorOfShapeVector;
B
bjjwwang 已提交
66
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
W
wangguibao 已提交
67

W
wangguibao 已提交
68 69 70
  int read_fd;
  int write_fd;
  pid_t owner_tid;
71 72
  const InVectorT* inVectorT_ptr;
  OutVectorT* outVectorT_ptr;
W
wangguibao 已提交
73
  size_t rem;
H
HexToString 已提交
74 75 76 77 78
  size_t total_feed_batch;
  std::set<size_t> set_feed_lod_index;
  std::set<size_t> set_feed_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;
  std::set<size_t> set_fetch_nobatch_index;
W
wangguibao 已提交
79
  butil::atomic<size_t> index;
H
HexToString 已提交
80
  size_t taskmeta_num;
B
bjjwwang 已提交
81
  size_t total_taskmeta_num;
H
HexToString 已提交
82 83 84 85
  THREAD_MUTEX_T task_mut;
  bool fetch_init;
  // taskmeta_num * set_feed_lod_index.size()
  std::vector<OutVectorT> outLodTensorVector;
B
bjjwwang 已提交
86
  MempoolRegion* memoryPtr;
W
wangguibao 已提交
87 88 89 90 91

  Task() {
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
92 93
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
H
HexToString 已提交
94 95 96 97
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
W
wangguibao 已提交
98
    rem = -1;
H
HexToString 已提交
99 100
    total_feed_batch = 0;
    taskmeta_num = 0;
W
wangguibao 已提交
101
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
102 103
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
B
bjjwwang 已提交
104
    total_taskmeta_num = 1;
H
HexToString 已提交
105 106 107
    outLodTensorVector.clear();
  }
  ~Task() {
H
HexToString 已提交
108 109 110 111 112 113 114 115 116 117 118 119
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
B
bjjwwang 已提交
120
    total_taskmeta_num = 1;
H
HexToString 已提交
121
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
122
    THREAD_MUTEX_DESTROY(&task_mut);
H
HexToString 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    fetch_init = false;
    outLodTensorVector.clear();
  }

  void clear(){
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
B
bjjwwang 已提交
140
    total_taskmeta_num = 1;
H
HexToString 已提交
141 142 143
    index.store(0, butil::memory_order_relaxed);
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
H
HexToString 已提交
144
    outLodTensorVector.clear();
W
wangguibao 已提交
145
  }
146

H
HexToString 已提交
147
  bool check_feedvar_valid(size_t feedvar_index) {
148 149 150 151 152 153 154 155 156 157 158 159 160
    if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
      LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
      return 0;
    }

    if ((*inVectorT_ptr)[feedvar_index].shape.size() <= 0) {
      LOG(ERROR) << "feedvar[" << feedvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
161 162 163 164 165 166 167 168
  bool combine_task_valid(Task* other_task) {
    // TODO(HexToString): auto-padding
    // 除最外层的shape外,内层shape应一致才能合并。
    // 否则跳出循环,放入下一个batchTask中。
    // 以此保证batch.append_task(task)中的task的内层shape相同。
    if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
      return false;
    }
169

H
HexToString 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    // 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
    // 所以要求该feedvar必须相等,才能合并。
    // 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
    for (size_t feedvar_index = 0;
         feedvar_index < set_feed_nobatch_index.size();
         ++feedvar_index) {
      int result =
          std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
                      (*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
                      (*inVectorT_ptr)[feedvar_index].data.length());
      if (result != 0) return false;
    }
    return true;
  }

  size_t feedvar_batch_size(size_t feedvar_index) {
186 187 188
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
189 190 191 192 193 194 195 196 197
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
        (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
      return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
198 199 200
    return (*inVectorT_ptr)[feedvar_index].shape[0];
  }

H
HexToString 已提交
201
  size_t feedvar_element_bytesize(size_t feedvar_index) {
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
    int dtype = (*inVectorT_ptr)[feedvar_index].dtype;
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
223
  size_t feedvar_element_num(size_t feedvar_index) {
224 225 226
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
227
    size_t element_num = 1;
228 229
    if ((*inVectorT_ptr)[feedvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
H
HexToString 已提交
230 231
      // [10,1] = [10], so if shape[1] doesn`t exist.
      // should return 1.
232 233 234
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
235
    for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
236 237 238 239 240
      element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
241
  size_t feedvar_bytesize(size_t feedvar_index) {
242 243 244 245
    return feedvar_element_num(feedvar_index) *
           feedvar_element_bytesize(feedvar_index);
  }

H
HexToString 已提交
246
  ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
247 248 249 250 251 252 253 254
    if (!check_feedvar_valid(feedvar_index)) {
      return ShapeVector();
    }
    return ShapeVector{(*inVectorT_ptr)[feedvar_index].shape.begin() + 1,
                       (*inVectorT_ptr)[feedvar_index].shape.end()};
  }

  VectorOfShapeVector feedvar_shape_nobatch() {
H
HexToString 已提交
255 256 257 258 259
    VectorOfShapeVector vector_of_feedvar_shape_nobatch;
    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
         ++feedvar_index) {
      vector_of_feedvar_shape_nobatch.push_back(
          feedvar_shape_nobatch(feedvar_index));
260 261 262 263
    }
    return vector_of_feedvar_shape_nobatch;
  }

H
HexToString 已提交
264 265 266 267 268 269 270 271 272 273
  // For each feedvar, batch should be 1 or batch_size.
  // if feedvar-1: batch_size = 1 (always not batch).
  // feedvar-2: batch_size = n,  batch = n.
  // this function is not thread safe. only called when task is creating.
  bool task_init() {
    total_feed_batch = feedvar_batch_size(0);
    // which means error.
    if (total_feed_batch <= 0) return false;

    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
274
         ++feedvar_index) {
H
HexToString 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
      // feedvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
        // which means error.
        if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
          return false;
        } else {
          // which means feedvar shape[0] = 1.
          // shape[0] does not change with batch
          set_feed_nobatch_index.insert(feedvar_index);
          total_feed_batch =
              std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
        }
      }
      // 将lod feedvar index加入到vector中。
      if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
          (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
        set_feed_lod_index.insert(feedvar_index);
297 298
      }
    }
H
HexToString 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    return true;
  }

  size_t batch_size() { return total_feed_batch; }

  // start_batch range is 0~batch_size, end_batch range is 1~batch_size
  // start_batch should not be included, end_batch > start_batch
  // return is (start_batch, end_batch] = [start_batch+1,end_batch]
  // for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
  // [start_batch,end_batch-1] = [start_batch,end_batch)
  // for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
  // [lod[start_batch],lod[end_batch])
  // for nobatch, shape0_index = [0,1)
  // 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
  // myindex <shape0_index[1];myindex++)即可.

  // 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
  // 3],即取batch=2,3.
  // 此时lod=[3,4,6],处理后得到[1,3]
  // 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
  std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
                                                        size_t start_batch,
                                                        size_t end_batch) {
    std::vector<std::vector<size_t>> feature_vector;
    // feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
    // feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
    // feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
    // feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。

    // if 为 nobatch feedvar情况。
    // else if 为带lod的feedvar情况。
    // else为不带lod 普通feedvar情况。
    if (set_feed_nobatch_index.size() > 0 &&
        set_feed_nobatch_index.find(feedvar_index) !=
            set_feed_nobatch_index.end()) {
      feature_vector = {{0, 1}, {}, {1}};
    } else if (set_feed_lod_index.size() > 0 &&
               set_feed_lod_index.find(feedvar_index) !=
                   set_feed_lod_index.end()) {
      std::vector<size_t> feed_lod_vector(end_batch - start_batch);
      for (size_t lod_index = start_batch + 1, vector_index = 0;
           lod_index < end_batch + 1;
           ++lod_index, ++vector_index) {
        feed_lod_vector[vector_index] =
            (*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
            (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
345
      }
H
HexToString 已提交
346 347 348 349 350 351
      size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
      size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
      feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
      // feature_vector.push_back(feed_lod_vector);
    } else {
      feature_vector = {{start_batch, end_batch}};
352
    }
H
HexToString 已提交
353
    return feature_vector;
354 355
  }

H
HexToString 已提交
356 357 358
  bool combine_taskmeta() {
    // 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
    // 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
B
bjjwwang 已提交
359
    if (vector_fetch_lod_index.size() > 0 && total_taskmeta_num > 1) {
H
HexToString 已提交
360 361 362
      for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
        size_t data_length = 0;
        size_t lod_length = 0;
H
HexToString 已提交
363
        size_t total_shape0 = 0;
H
HexToString 已提交
364 365
        size_t feedvar_index = vector_fetch_lod_index[index];
        // 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
B
bjjwwang 已提交
366
        for (size_t taskmeta_index = 0; taskmeta_index < total_taskmeta_num;
H
HexToString 已提交
367
             ++taskmeta_index) {
H
HexToString 已提交
368 369 370
          data_length +=
              outLodTensorVector[taskmeta_index][index].data.length();
          lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
H
HexToString 已提交
371
          total_shape0 += outLodTensorVector[taskmeta_index][index].shape[0];
H
HexToString 已提交
372 373 374
        }
        // 一次性扩容PaddleTensor中的data和lod
        paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
B
bjjwwang 已提交
375
        fetchVarTensor.shape[0] = total_shape0;
B
bjjwwang 已提交
376 377 378 379 380
        void* databuf_data = MempoolWrapper::instance().malloc(data_length,memoryPtr);
        paddle::PaddleBuf paddleBuf(databuf_data, data_length);
        fetchVarTensor.data = paddleBuf;
         
        //fetchVarTensor.data.Resize(data_length);
H
HexToString 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393
        // task中的lod补0
        if (fetchVarTensor.lod.size() <= 0) {
          fetchVarTensor.lod.push_back({0});
        } else if (fetchVarTensor.lod[0].size() <= 0) {
          fetchVarTensor.lod[0].push_back(0);
        }
        fetchVarTensor.lod[0].resize(lod_length + 1, 0);

        //
        size_t data_length_offset = 0;
        size_t lod_length_offset = 0;
        size_t once_data_length = 0;
        size_t once_lod_length = 0;
B
bjjwwang 已提交
394
        for (size_t taskmeta_index = 0; taskmeta_index < total_taskmeta_num;
H
HexToString 已提交
395
             ++taskmeta_index) {
B
bjjwwang 已提交
396
          //process data
H
HexToString 已提交
397 398 399 400 401 402
          void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
          void* source_ptr =
              outLodTensorVector[taskmeta_index][index].data.data();
          once_data_length =
              outLodTensorVector[taskmeta_index][index].data.length();
          memcpy(dst_ptr, source_ptr, once_data_length);
B
bjjwwang 已提交
403 404 405
          data_length_offset += once_data_length;
          //process lod
          size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
H
HexToString 已提交
406 407 408 409 410 411 412
          once_lod_length =
              outLodTensorVector[taskmeta_index][index].lod[0].size();
          for (size_t once_index = 0; once_index < once_lod_length;
               ++once_index) {
            fetchVarTensor.lod[0][lod_length_offset + 1] =
                last_lod_value +
                outLodTensorVector[taskmeta_index][index].lod[0][once_index];
B
bjjwwang 已提交
413
            lod_length_offset++;
H
HexToString 已提交
414
          }
B
bjjwwang 已提交
415

H
HexToString 已提交
416 417
        }
      }
418
    }
H
HexToString 已提交
419
    return true;
420
  }
H
HexToString 已提交
421

H
HexToString 已提交
422 423
  bool task_fetch_init(BatchTasks<TaskT>& batchTask);
  bool task_fetch_create(BatchTasks<TaskT>& batchTask);
W
wangguibao 已提交
424 425
};

426 427 428 429 430 431 432 433 434 435 436 437
// `Several Task` or `part of batch in Task` can be a TaskMeta.
// Task is the original Request from User.
// For example, the batch of Task is 30. There are 4 Requests.
// The batch of BatchTasks is 100, which means we can deal 100 batch 1 time.
// TaskMeta-1:{task-1,0,30} TaskMeta-2:{task-2,0,30} TaskMeta-3:{task-3,0,30}
// but the last Task will be divided to 2 TaskMeta.
// TaskMeta-4:{task-4,0,10} TaskMeta-5:{task-4,10,30}.
// TaskMeta-1 ~ TaskMeta-4 will be inside BatchTasks-1.
// TaskMeta-5 will be inside BatchTasks-2.

// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
H
HexToString 已提交
438
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
439 440
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
H
HexToString 已提交
441 442 443 444 445

// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
W
wangguibao 已提交
446
template <typename TaskT>
W
wangguibao 已提交
447
struct TaskMeta {
H
HexToString 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
      : task(ptr),
        begin(start),
        end(start + add),
        taskmeta_index(taskmeta_index) {
    feedvar_num = ptr->inVectorT_ptr->size();
    for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
         ++feedvar_index) {
      std::vector<std::vector<size_t>> feature =
          ptr->get_feature_by_batch(feedvar_index, start, start + add);
      feed_shape0_range.push_back(feature[0]);
      feedvar_type.push_back(feature.size());
      if (feature.size() == 1) {
        feed_lod_vector.push_back({});
      } else if (feature.size() == 2) {
        feed_lod_vector.push_back(feature[1]);
      } else {
        feed_lod_vector.push_back({});
      }
    }
  }
W
wangguibao 已提交
469 470 471 472

  TaskT* task;
  size_t begin;
  size_t end;
H
HexToString 已提交
473 474 475 476 477
  size_t feedvar_num;
  size_t taskmeta_index;
  std::vector<std::vector<size_t>> feed_shape0_range;
  std::vector<std::vector<size_t>> feed_lod_vector;
  std::vector<size_t> feedvar_type;
W
wangguibao 已提交
478 479
};

480 481 482
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
H
HexToString 已提交
483 484
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
W
wangguibao 已提交
485
template <typename TaskT>
W
wangguibao 已提交
486
class BatchTasks {
W
wangguibao 已提交
487 488 489 490
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
  typedef TaskMeta<TaskT> TaskMetaT;
H
HexToString 已提交
491 492 493 494 495
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
  typedef std::vector<size_t> LodVector;
  typedef std::vector<LodVector> PaddleTensorLod;
  friend TaskT;
W
wangguibao 已提交
496

H
HexToString 已提交
497
  explicit BatchTasks(size_t batch_size,
H
HexToString 已提交
498
                      bool overrun = false,
H
HexToString 已提交
499
                      bool allow_split_request = true)
W
wangguibao 已提交
500 501
      : _batch_size(batch_size),
        _rem_size(batch_size),
H
HexToString 已提交
502
        _overrun(overrun),
H
HexToString 已提交
503
        _allow_split_request(allow_split_request) {
W
wangguibao 已提交
504
    _batch_in.clear();
505
    _batch_in_offset.clear();
H
HexToString 已提交
506 507 508 509
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
510
    _batch_out.clear();
511
    _batch_out_offset.clear();
H
HexToString 已提交
512
    _total_fetch_batch = 0;
513
    _taskmeta_vector.clear();
H
HexToString 已提交
514 515
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
516 517 518 519
  }

  ~BatchTasks() {
    _batch_in.clear();
520
    _batch_in_offset.clear();
H
HexToString 已提交
521 522 523 524
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
525
    _batch_out.clear();
526
    _batch_out_offset.clear();
H
HexToString 已提交
527
    _total_fetch_batch = 0;
528
    _taskmeta_vector.clear();
H
HexToString 已提交
529 530
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
531 532 533
  }

  // synchronized operation
534
  // because Upper level callers of this function have already locked.
H
HexToString 已提交
535
  // 能进到此函数的task都是同类task,在该函数之前已保证了这点。
W
wangguibao 已提交
536 537
  size_t append_task(TaskT* task) {
    size_t add = std::min(task->rem, _rem_size);
H
HexToString 已提交
538
    // when _overrun == true, it means always take a whole task as TaskMeta
H
HexToString 已提交
539 540
    // we can temporary breakthrough the limit of BatchTask`s capacity
    // BatchTask`s capacity is _batch_size or _rem_size
H
HexToString 已提交
541
    if (_overrun) {
W
wangguibao 已提交
542
      add = task->rem;
W
wangguibao 已提交
543
    }
544
    int start_index = task->batch_size() - task->rem;
H
HexToString 已提交
545
    TaskMetaT tm(task, start_index, add, task->taskmeta_num);
B
bjjwwang 已提交
546 547 548 549 550
    task->rem -= add;
    _rem_size -= add;
    if(task->taskmeta_num == 0){
      task->total_taskmeta_num = 1 + (task->rem + _batch_size - 1)/_batch_size;
    }
H
HexToString 已提交
551
    task->taskmeta_num += 1;
552
    _taskmeta_vector.push_back(tm);
H
HexToString 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    if (_batch_in_offset.size() == 0) {
      _batch_in_offset.resize(tm.feedvar_num, 0);
    }
    if (_total_shape0_batch_in.size() == 0) {
      _total_shape0_batch_in.resize(tm.feedvar_num, 0);
    }
    if (_batch_in_lod.size() == 0) {
      PaddleTensorLod null_lod;
      _batch_in_lod.resize(tm.feedvar_num, null_lod);
    }
    _total_feed_batch += add;
    for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
         ++feedvar_index) {
      if (tm.feedvar_type[feedvar_index] == 1) {
        // 普通的非lod feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      } else if (tm.feedvar_type[feedvar_index] == 2) {
        // lod类型的feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
        // 在Lod最前面加0
        if (_batch_in_lod[feedvar_index].size() <= 0) {
          _batch_in_lod[feedvar_index].push_back({0});
        } else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
          _batch_in_lod[feedvar_index][0].push_back(0);
        }
        // 将lod加上前一组lod的结尾最大值,组合Lod
        size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
        for (size_t lod_index = 0;
             lod_index < tm.feed_lod_vector[feedvar_index].size();
             ++lod_index) {
          _batch_in_lod[feedvar_index][0].push_back(
              last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
        }
      } else {
        // tm.feedvar_type[feedvar_index] == 3
        // nobatch类型的feedvar.
        // 此时不累加,且值应为1
        _total_shape0_batch_in[feedvar_index] =
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      }
    }
W
wangguibao 已提交
601 602 603
    return _rem_size;
  }

604 605
  static bool check_valid(const typename TaskT::InVectorT& in,
                          const typename TaskT::OutVectorT& out,
W
wangguibao 已提交
606 607 608 609 610 611 612
                          bool align) {
    (void)in;
    (void)out;
    (void)align;
    return true;
  }

613 614 615 616 617 618 619 620
  // this should be modified totally.
  // maybe we don`t need to do this inside the BatchTasks.
  // we can do the copy work outside the BatchTasks.
  // cause maybe next time we don`t need to do the extra copy.
  // directly copy the every Task into the Predictor.

  // batch.merge_tasks() is thread-safe function
  // cause batch is a local variable and Task is just read, not written.
H
HexToString 已提交
621

W
wangguibao 已提交
622
  void merge_tasks() {
623 624 625 626 627 628
    if (_taskmeta_vector.size() <= 0) {
      return;
    }
    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskMetaT& tm = _taskmeta_vector[ti];

H
HexToString 已提交
629 630
      for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
           ++feedvar_index) {
631
        const paddle::PaddleTensor& feedVarTensor =
H
HexToString 已提交
632 633
            (*tm.task->inVectorT_ptr)[feedvar_index];
        size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
634 635

        if (ti == 0) {
H
HexToString 已提交
636
          // Create the entire tensor at once
637 638 639 640 641 642
          // for now, we assume that every task feedvar_bytesize is the same.
          // which means we dont support auto embedding.
          // but for different feedvar, it is different.
          paddle::PaddleTensor paddleTensor;
          paddleTensor.dtype = feedVarTensor.dtype;
          paddleTensor.name = feedVarTensor.name;
H
HexToString 已提交
643
          paddleTensor.lod = _batch_in_lod[feedvar_index];
644
          paddleTensor.shape = feedVarTensor.shape;
H
HexToString 已提交
645
          paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
B
bjjwwang 已提交
646 647 648 649
          size_t databuf_size = feedvar_bytesize * _total_shape0_batch_in[feedvar_index];
          void* databuf_data = MempoolWrapper::instance().malloc(databuf_size);
          paddle::PaddleBuf paddleBuf(databuf_data, databuf_size);
          paddleTensor.data = paddleBuf;
650 651 652
          _batch_in.push_back(paddleTensor);
        }

H
HexToString 已提交
653 654
        void* dst_ptr = _batch_in[feedvar_index].data.data() +
                        _batch_in_offset[feedvar_index];
655
        void* source_ptr =
H
HexToString 已提交
656 657 658 659 660
            feedVarTensor.data.data() +
            feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
        size_t length =
            feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
                                tm.feed_shape0_range[feedvar_index][0]);
661
        memcpy(dst_ptr, source_ptr, length);
H
HexToString 已提交
662 663 664
        // nobatch类型的feedvar,不叠加.
        if (tm.feedvar_type[feedvar_index] != 3)
          _batch_in_offset[feedvar_index] += length;
W
wangguibao 已提交
665
      }
W
wangguibao 已提交
666
    }
W
wangguibao 已提交
667
  }
W
wangguibao 已提交
668

H
HexToString 已提交
669
  bool check_fetchvar_valid(size_t fetchvar_index) {
670 671 672 673 674 675 676 677 678 679 680 681 682
    if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
      LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
      return 0;
    }

    if (_batch_out[fetchvar_index].shape.size() <= 0) {
      LOG(ERROR) << "fetchvar[" << fetchvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
683
  size_t fetchvar_element_bytesize(size_t fetchvar_index) {
684 685 686
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
687
    size_t dtype = _batch_out[fetchvar_index].dtype;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
705
  size_t fetchvar_element_num(size_t fetchvar_index) {
706 707 708
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
709
    size_t element_num = 1;
710 711 712 713 714
    if (_batch_out[fetchvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
715
    for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
716 717 718 719 720
      element_num *= _batch_out[fetchvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
721
  size_t fetchvar_bytesize(size_t fetchvar_index) {
722 723 724 725
    return fetchvar_element_num(fetchvar_index) *
           fetchvar_element_bytesize(fetchvar_index);
  }

H
HexToString 已提交
726 727 728
  size_t fetchvar_batch_size(size_t fetchvar_index) {
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
729
    }
H
HexToString 已提交
730 731 732 733 734 735 736 737 738 739
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if (_batch_out[fetchvar_index].lod.size() > 0 &&
        _batch_out[fetchvar_index].lod[0].size() > 0) {
      return _batch_out[fetchvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
    return _batch_out[fetchvar_index].shape[0];
740 741
  }

H
HexToString 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755
  size_t fetchvar_batch_size() { return _total_fetch_batch; }

  bool deal_batch_out() {
    _total_fetch_batch = fetchvar_batch_size(0);
    if (_total_fetch_batch <= 0) return false;
    for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
         ++fetchvar_index) {
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
      // fetchvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
B
bjjwwang 已提交
756 757
        if(fetchvar_batch_size(fetchvar_index) <= 0){
          // which means error.
H
HexToString 已提交
758
          return false;
B
bjjwwang 已提交
759
        }else if(fetchvar_batch_size(fetchvar_index) == 1){
H
HexToString 已提交
760 761 762 763 764
          // which means fetchvar shape[0] = 1.
          // shape[0] does not change with batch
          set_fetch_nobatch_index.insert(fetchvar_index);
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
B
bjjwwang 已提交
765 766 767 768 769 770 771 772 773 774 775 776
        }else if(_total_fetch_batch == 1){
          //这时意味着,之前的fetchvar shape[0] 全部都= 1
          //当前的fetchvar shape[0] > 1
          //所以,之前的都是no_batch
          for(size_t temp_index = fetchvar_index-1; temp_index >= 0; --temp_index){
            set_fetch_nobatch_index.insert(fetchvar_index);
          }
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
        }else{
          // which means error.
          return false;
H
HexToString 已提交
777 778 779 780 781 782 783
        }
      }
      // 将lod fetchvar index加入到vector中。
      if (_batch_out[fetchvar_index].lod.size() > 0 &&
          _batch_out[fetchvar_index].lod[0].size() > 0) {
        vector_fetch_lod_index.push_back(fetchvar_index);
      }
784
    }
H
HexToString 已提交
785
    return true;
786 787
  }

W
wangguibao 已提交
788
  void notify_tasks() {
789 790 791 792
    if (_taskmeta_vector.size() <= 0) {
      LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
      return;
    }
H
HexToString 已提交
793 794 795 796 797
    // 根据_batch_out,求出输出的整体batch
    // 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
    deal_batch_out();
    // 若输出的batch不是1,且不与输入batch对应,则错误
    if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
798
      LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
W
wangguibao 已提交
799
      return;
W
wangguibao 已提交
800 801
    }

H
HexToString 已提交
802
    size_t fetchvar_num = _batch_out.size();
803 804 805 806 807 808 809 810
    if (_batch_out_offset.size() == 0) {
      _batch_out_offset.resize(fetchvar_num, 0);
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskT* task = _taskmeta_vector[ti].task;
      size_t begin = _taskmeta_vector[ti].begin;
      size_t end = _taskmeta_vector[ti].end;
W
wangguibao 已提交
811
      size_t add = end - begin;
H
HexToString 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
      size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
      // 对task中的outVectorT_ptr进行初始化
      // 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
      if (!task->task_fetch_init(*this)) {
        LOG(ERROR) << " task_fetch_init error.";
        return;
      }
      size_t fetch_lod_index = 0;

      for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
           ++fetchvar_index) {
        size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);
        if (set_fetch_nobatch_index.size() > 0 &&
            set_fetch_nobatch_index.find(fetchvar_index) !=
                set_fetch_nobatch_index.end()) {
          // nobatch fetchvar情况
          // 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr = fetchVarTensor.data.data();
          size_t length = fetchvar_bytesize_index * 1;
          void* source_ptr = _batch_out[fetchvar_index].data.data();
          memcpy(dst_ptr, source_ptr, length);
        } else if (vector_fetch_lod_index.size() > 0 &&
                   std::find(vector_fetch_lod_index.begin(),
                             vector_fetch_lod_index.end(),
                             fetchvar_index) != vector_fetch_lod_index.end()) {
          // lod fetchvar情况,此时无法确定总的shape[0]
          // 根据task中的task_num总数开辟task_num个临时空间
          // 每个lod型的fetchvar拷贝到对应的临时空间中
          // 最后再计算临时空间的总量,合并fetchvar和lod
          size_t last_batch = _batch_out_offset[fetchvar_index];
          size_t shape0_index_start =
              _batch_out[fetchvar_index].lod[0][last_batch];
          size_t shape0_index_end =
              _batch_out[fetchvar_index].lod[0][last_batch + add];
          size_t shape0_length = shape0_index_end - shape0_index_start;
          // task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
          // 此时,先拷入task->outLodTensorVector[taskmeta_index]
          // 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
B
bjjwwang 已提交
852
          if (task->total_taskmeta_num > 1) {
H
HexToString 已提交
853 854 855
            paddle::PaddleTensor& fetchVarTensor =
                task->outLodTensorVector[taskmeta_index][fetch_lod_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
856
            fetchVarTensor.shape[0] = shape0_length;
B
bjjwwang 已提交
857
            fetch_lod_index++;
B
bjjwwang 已提交
858 859 860 861 862

            void* databuf_data = MempoolWrapper::instance().malloc(length,task->memoryPtr);
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
            //fetchVarTensor.data.Resize(length);
H
HexToString 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);
            // 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({});
            }
            fetchVarTensor.lod[0].resize(add, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 0;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          } else {
            // task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
            // 此时resize后,直接写入task->outVectorT_ptr中即可。
            paddle::PaddleTensor& fetchVarTensor =
                (*task->outVectorT_ptr)[fetchvar_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
887
            fetchVarTensor.shape[0] = shape0_length;
B
bjjwwang 已提交
888 889 890 891 892 893
            
            void* databuf_data = MempoolWrapper::instance().malloc(length,task->memoryPtr);
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
            
            //fetchVarTensor.data.Resize(length);
H
HexToString 已提交
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);

            // task中的lod补0
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({0});
            } else if (fetchVarTensor.lod[0].size() <= 0) {
              fetchVarTensor.lod[0].push_back(0);
            }
            // 将合并的lod信息对应的batch,拆分到task中。
            // 注意,此时需要去掉前面lod导致的前置积累。
            // 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
            // 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
            // [0,2,5]
            // 第二组,都需要减5,得到[2,5],这样处理才对。
            fetchVarTensor.lod[0].resize(add + 1, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 1;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          }
        } else {
          // 普通fetchvar情况,此时该Task总的fetchvar_batch =
          // 输入的总的batch_size()
          // 输出的batch应与输入的batch对应相等。
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr =
              fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
          size_t length = fetchvar_bytesize_index * add;
          void* source_ptr =
              _batch_out[fetchvar_index].data.data() +
              _batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;

          memcpy(dst_ptr, source_ptr, length);
W
wangguibao 已提交
936
        }
H
HexToString 已提交
937
        _batch_out_offset[fetchvar_index] += add;
W
wangguibao 已提交
938
      }
W
wangguibao 已提交
939

H
HexToString 已提交
940 941 942
      // index是局部变量,fetch_add是原子操作,成功则返回原值。
      // 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
      // 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
W
wangguibao 已提交
943
      size_t index = task->index.fetch_add(add);
944
      if ((index + add) >= task->batch_size()) {
H
HexToString 已提交
945
        task->combine_taskmeta();
W
wangguibao 已提交
946 947
        char c = 0;
        while (write(task->write_fd, &c, 1) != 1 && errno == EINTR) {
W
wangguibao 已提交
948
        }
W
wangguibao 已提交
949 950
        butil::return_object(task);
      }
W
wangguibao 已提交
951
    }
W
wangguibao 已提交
952
  }
W
wangguibao 已提交
953

954
  const typename TaskT::InVectorT& in() const { return _batch_in; }
W
wangguibao 已提交
955

956
  typename TaskT::OutVectorT& out() { return _batch_out; }
W
wangguibao 已提交
957

958
  size_t task_size() { return _taskmeta_vector.size(); }
W
wangguibao 已提交
959

H
HexToString 已提交
960 961
  const size_t get_rem_size() { return _rem_size; }

H
HexToString 已提交
962
  bool get_overrun() { return _overrun; }
H
HexToString 已提交
963 964 965

  bool get_allow_split_request() { return _allow_split_request; }

W
wangguibao 已提交
966
 private:
967 968
  std::vector<TaskMetaT> _taskmeta_vector;
  typename TaskT::InVectorT _batch_in;
H
HexToString 已提交
969
  std::vector<size_t> _batch_in_offset;
H
HexToString 已提交
970 971 972 973
  std::vector<size_t> _total_shape0_batch_in;
  size_t _total_feed_batch;
  std::vector<PaddleTensorLod> _batch_in_lod;

974
  typename TaskT::OutVectorT _batch_out;
H
HexToString 已提交
975
  std::vector<size_t> _batch_out_offset;
H
HexToString 已提交
976 977 978 979 980 981
  // std::vector<size_t> _total_shape0_batch_out;
  size_t _total_fetch_batch;
  // std::vector<PaddleTensorLod>  _batch_out_lod;
  std::set<size_t> set_fetch_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;

W
wangguibao 已提交
982 983
  size_t _rem_size;
  size_t _batch_size;
H
HexToString 已提交
984
  bool _overrun;
H
HexToString 已提交
985
  bool _allow_split_request;
W
wangguibao 已提交
986 987
};

W
wangguibao 已提交
988
// BSF task handle
H
HexToString 已提交
989 990 991 992 993 994 995
// TaskHandler is the handle of Task.
// `read_fd` is used for receive signal in brpc Thread.
// 'write_fd' is used for write signal in bsf Thread.
// when TaskMeta is done, bsf Thread will write to 'write_fd'.
// brpc Thread is keeping reading 'read_fd' in a while loop.
// brpc Thread will receive signal when TaskMeta is done.
// so `read_fd` and 'write_fd' is used for communicate in different Thread.
W
wangguibao 已提交
996
template <typename TaskT>
W
wangguibao 已提交
997
struct TaskHandler {
W
wangguibao 已提交
998 999
  int read_fd;
  int write_fd;
W
wangguibao 已提交
1000

W
wangguibao 已提交
1001 1002 1003
  TaskHandler() : read_fd(-1), write_fd(-1) {
    // do nothing
  }
W
wangguibao 已提交
1004

W
wangguibao 已提交
1005 1006 1007 1008
  explicit TaskHandler(TaskT const& task)
      : read_fd(task.read_fd), write_fd(task.write_fd) {
    // do nothing
  }
W
wangguibao 已提交
1009

W
wangguibao 已提交
1010
  inline bool valid() const { return read_fd >= 0 && write_fd >= 0; }
W
wangguibao 已提交
1011

W
wangguibao 已提交
1012 1013 1014 1015
  static TaskHandler<TaskT>& valid_handle() {
    static TaskHandler<TaskT> vhandle;
    return vhandle;
  }
W
wangguibao 已提交
1016 1017
};

H
HexToString 已提交
1018
// TaskExecutor is a Thread pool.
W
wangguibao 已提交
1019
template <typename TaskT>
W
wangguibao 已提交
1020 1021
class TaskExecutor;

H
HexToString 已提交
1022
// ThreadContext is used for start a bsf Thread.
W
wangguibao 已提交
1023
template <typename TaskT>
W
wangguibao 已提交
1024
struct ThreadContext {
W
wangguibao 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  TaskExecutor<TaskT>* executor;
  void* user_thread_context;
  THREAD_T tid;
  int init_status;

  ThreadContext()
      : executor(NULL), user_thread_context(NULL), tid(-1), init_status(0) {
    // do nothing
  }

  ~ThreadContext() {
    tid = -1;
    executor = NULL;
    user_thread_context = NULL;
    init_status = 0;
  }
W
wangguibao 已提交
1041 1042
};

H
HexToString 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051
// TaskExecutor is a Thread pool.
// Each Model corresponding to a Model.
// TaskT is actually a Request preprocessed by ReaderOp.
// TaskT will be divided as TaskMeta which will be
// put into _task_queue in brpc-Thread by schedule().
// TaskHander will be returned to brpc-Thread.
// start() function will create `thread_num` bsf Threads.
// every bsf Thread check the _task_queue and take TaskMeta from it.
// when a Task`s all TaskMeta is done, TaskHander will be noticed.
W
wangguibao 已提交
1052
template <typename TaskT>
W
wangguibao 已提交
1053
class TaskExecutor {
W
wangguibao 已提交
1054 1055 1056
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
1057 1058
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1059
  typedef std::vector<TaskT> TaskArrayT;
1060
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
H
HexToString 已提交
1061 1062
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
1063

W
wangguibao 已提交
1064 1065 1066 1067 1068 1069
  TaskExecutor()
      : _stop(false),
        _thread_init_fn(NULL),
        _thread_reset_fn(NULL),
        _user_thread_contexts(NULL),
        _batch_size(DEFAULT_BATCH_SIZE),
H
HexToString 已提交
1070
        _overrun(false),
W
wangguibao 已提交
1071 1072 1073 1074 1075
        _fn(NULL) {
    THREAD_MUTEX_INIT(&_mut, NULL);
    THREAD_COND_INIT(&_cond, NULL);
    _task_queue.clear();
  }
W
wangguibao 已提交
1076

W
wangguibao 已提交
1077 1078 1079 1080
  ~TaskExecutor() {
    THREAD_MUTEX_DESTROY(&_mut);
    THREAD_COND_DESTROY(&_cond);
  }
W
wangguibao 已提交
1081

H
HexToString 已提交
1082 1083 1084 1085 1086
  // cause vector.resize will use copy or move construct.
  TaskExecutor(TaskExecutor<TaskT>&& other) noexcept {
    if (this != &other) {
      TaskExecutor();
    }
W
wangguibao 已提交
1087
  }
W
wangguibao 已提交
1088

W
wangguibao 已提交
1089
  void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
W
wangguibao 已提交
1090

H
HexToString 已提交
1091
  void set_overrun(bool overrun) { _overrun = overrun; }
H
HexToString 已提交
1092 1093 1094 1095

  void set_allow_split_request(bool allow_split_request) {
    _allow_split_request = allow_split_request;
  }
W
wangguibao 已提交
1096

W
wangguibao 已提交
1097 1098 1099 1100 1101
  void set_thread_init_fn(boost::function<int(void*)> init_fn,
                          void** contexts = NULL) {
    _thread_init_fn = init_fn;
    _user_thread_contexts = contexts;
  }
W
wangguibao 已提交
1102

W
wangguibao 已提交
1103 1104 1105 1106
  void set_thread_reset_fn(boost::function<int(void*)> reset_fn) {
    _thread_reset_fn = reset_fn;
  }

1107
  void set_thread_callback_fn(boost::function<void(const void*, void*)> cb) {
W
wangguibao 已提交
1108 1109
    _fn = cb;
  }
W
wangguibao 已提交
1110

W
wangguibao 已提交
1111 1112
  int start(uint32_t thread_num, uint32_t init_timeout_sec = 0);
  void stop();
W
wangguibao 已提交
1113

W
wangguibao 已提交
1114
  static void* thread_entry(void* args);
W
wangguibao 已提交
1115

W
wangguibao 已提交
1116
  int work(ThreadContext<TaskT>* context);
W
wangguibao 已提交
1117

B
bjjwwang 已提交
1118
  TaskHandler<TaskT> schedule(const void*, void*, MempoolRegion* memoryPtr);
W
wangguibao 已提交
1119

H
HexToString 已提交
1120
  bool move_task_to_batch(BatchTasks<TaskT>& batchTask);  // NOLINT
W
wangguibao 已提交
1121

H
HexToString 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
 private:
  TaskExecutor(TaskExecutor<TaskT> const& other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> const& other) = delete;
  /*
  TaskExecutor(TaskExecutor<TaskT> && other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> && other) = delete;
  */

W
wangguibao 已提交
1132
  bool _stop;
W
wangguibao 已提交
1133

W
wangguibao 已提交
1134 1135 1136
  // can't use boost::mutex, because some stupid macro
  THREAD_MUTEX_T _mut;
  THREAD_COND_T _cond;
W
wangguibao 已提交
1137

H
HexToString 已提交
1138
  std::list<TaskT*> _task_queue;
W
wangguibao 已提交
1139

W
wangguibao 已提交
1140 1141 1142
  boost::function<int(void*)> _thread_init_fn;
  boost::function<int(void*)> _thread_reset_fn;
  void** _user_thread_contexts;
W
wangguibao 已提交
1143

W
wangguibao 已提交
1144
  std::vector<ThreadContext<TaskT>*> _thread_contexts;
W
wangguibao 已提交
1145

W
wangguibao 已提交
1146
  size_t _batch_size;
H
HexToString 已提交
1147
  bool _overrun;
H
HexToString 已提交
1148
  bool _allow_split_request;
W
wangguibao 已提交
1149

1150
  boost::function<void(const void*, void*)> _fn;
W
wangguibao 已提交
1151 1152
};

H
HexToString 已提交
1153 1154 1155
// TaskExecutorVector is a SingleTon class.
// Each Model corresponding to a TaskExecutor.
// So we need several TaskExecutor when there are more than 1 Model.
H
HexToString 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
template <typename TaskT>
class TaskExecutorVector {
 public:
  static TaskExecutorVector<TaskT>& instance() {
    static TaskExecutorVector<TaskT> singleton;
    return singleton;
  }

  void resize(int size) { _vector_executor.resize(size); }

H
HexToString 已提交
1166 1167 1168 1169
  TaskExecutor<TaskT>& operator[](int task_index) {
    if (_vector_executor.size() <= task_index || task_index <= -1) {
      LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
      throw "_vector_executor.size() <= task_index or <= -1";
H
HexToString 已提交
1170
    }
H
HexToString 已提交
1171
    return _vector_executor[task_index];
H
HexToString 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  }

 private:
  TaskExecutorVector() = default;
  TaskExecutorVector(const TaskExecutorVector<TaskT>& other) = delete;
  TaskExecutorVector& operator=(const TaskExecutorVector<TaskT>& other) =
      delete;
  TaskExecutorVector(TaskExecutorVector<TaskT>&& other) = delete;
  TaskExecutorVector& operator=(TaskExecutorVector<TaskT>&& other) = delete;
  std::vector<TaskExecutor<TaskT>> _vector_executor;
};

H
HexToString 已提交
1184 1185 1186 1187 1188
// TaskManager is actually a wrapper of Request in bsf.
// TaskManager`s schedule() change Request to be TaskT.
// and divided TaskT into several TaskMeta to put into the TaskExecutor`s
// task_queue.
// wait() is a while loop to receive signal when a whole Task is done.
W
wangguibao 已提交
1189
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
1190
class TaskManager {
W
wangguibao 已提交
1191 1192
 public:
  typedef Task<InItemT, OutItemT> TaskT;
1193 1194
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1195

H
HexToString 已提交
1196 1197
  explicit TaskManager(uint32_t model_index)  // NOLINT
      : _model_index(model_index) {}
W
wangguibao 已提交
1198

W
wangguibao 已提交
1199
  ~TaskManager() { wait(); }
W
wangguibao 已提交
1200

B
bjjwwang 已提交
1201
  bool schedule(const void* in, void* out, MempoolRegion* memoryPtr);  // NOLINT
W
wangguibao 已提交
1202
  void wait();
W
wangguibao 已提交
1203

W
wangguibao 已提交
1204
  inline void clear() { wait(); }
W
wangguibao 已提交
1205

W
wangguibao 已提交
1206 1207
 private:
  TaskHandler<TaskT> _task_owned;
H
HexToString 已提交
1208
  uint32_t _model_index;
W
wangguibao 已提交
1209
};  // class TaskManager
W
wangguibao 已提交
1210 1211

class AutoMutex {
W
wangguibao 已提交
1212 1213 1214 1215
 public:
  explicit AutoMutex(THREAD_MUTEX_T& mut) : _mut(mut) {
    THREAD_MUTEX_LOCK(&_mut);
  }
W
wangguibao 已提交
1216

W
wangguibao 已提交
1217
  ~AutoMutex() { THREAD_MUTEX_UNLOCK(&_mut); }
W
wangguibao 已提交
1218

W
wangguibao 已提交
1219 1220
 private:
  THREAD_MUTEX_T& _mut;
W
wangguibao 已提交
1221 1222
};

W
wangguibao 已提交
1223 1224
}  // namespace bsf
}  // namespace im
W
wangguibao 已提交
1225

1226
// #include "core/predictor/framework/bsf-inl-tensor.h"
G
guru4elephant 已提交
1227
#include "core/predictor/framework/bsf-inl.h"