bsf.h 44.4 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16 17

#include <errno.h>
W
wangguibao 已提交
18
#include <algorithm>
H
HexToString 已提交
19
#include <cstring>
H
HexToString 已提交
20
#include <list>
H
HexToString 已提交
21
#include <set>
W
wangguibao 已提交
22
#include <vector>
W
wangguibao 已提交
23 24 25 26

#ifdef BCLOUD
#include "base/atomicops.h"
#else
W
wangguibao 已提交
27
#include "butil/atomicops.h"
W
wangguibao 已提交
28 29
#endif

G
guru4elephant 已提交
30
#include "core/predictor/common/inner_common.h"
W
wangguibao 已提交
31

W
wangguibao 已提交
32
#include "boost/function.hpp"
W
wangguibao 已提交
33

34 35 36
#include "core/predictor/framework/memory.h"
#include "paddle_inference_api.h"

W
wangguibao 已提交
37 38 39 40
namespace im {
namespace bsf {

static const size_t DEFAULT_BATCH_SIZE = 100;
B
bjjwwang 已提交
41 42
typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
typedef baidu::paddle_serving::predictor::MempoolRegion MempoolRegion;
W
wangguibao 已提交
43

44 45 46 47 48 49 50 51 52
// InItemT is paddle::PaddleTensor
// InVectorT std::vector<paddle::PaddleTensor>
// InVectorT means different feedvar, but not batch.
// Batch is already inside the  paddle::PaddleTensor.

// size_t `rem` records how many batch have not been put in BatchTasks.
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
H
HexToString 已提交
53 54
template <typename TaskT>
class BatchTasks;
55 56
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
W
wangguibao 已提交
57
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
58
struct Task {
59 60
  typedef std::vector<InItemT> InVectorT;
  typedef std::vector<OutItemT> OutVectorT;
W
wangguibao 已提交
61 62 63
  typedef InItemT InType;
  typedef OutItemT OutType;
  typedef Task<InItemT, OutItemT> TaskT;
H
HexToString 已提交
64
  typedef std::vector<size_t> ShapeVector;
65
  typedef std::vector<ShapeVector> VectorOfShapeVector;
B
bjjwwang 已提交
66
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
W
wangguibao 已提交
67

W
wangguibao 已提交
68 69 70
  int read_fd;
  int write_fd;
  pid_t owner_tid;
71 72
  const InVectorT* inVectorT_ptr;
  OutVectorT* outVectorT_ptr;
W
wangguibao 已提交
73
  size_t rem;
H
HexToString 已提交
74 75 76 77 78
  size_t total_feed_batch;
  std::set<size_t> set_feed_lod_index;
  std::set<size_t> set_feed_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;
  std::set<size_t> set_fetch_nobatch_index;
W
wangguibao 已提交
79
  butil::atomic<size_t> index;
H
HexToString 已提交
80 81 82 83 84
  size_t taskmeta_num;
  THREAD_MUTEX_T task_mut;
  bool fetch_init;
  // taskmeta_num * set_feed_lod_index.size()
  std::vector<OutVectorT> outLodTensorVector;
B
bjjwwang 已提交
85
  MempoolRegion* memoryPtr;
W
wangguibao 已提交
86 87 88 89 90

  Task() {
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
91 92
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
H
HexToString 已提交
93 94 95 96
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
W
wangguibao 已提交
97
    rem = -1;
H
HexToString 已提交
98 99
    total_feed_batch = 0;
    taskmeta_num = 0;
W
wangguibao 已提交
100
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
101 102 103 104 105
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
    outLodTensorVector.clear();
  }
  ~Task() {
H
HexToString 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
119
    THREAD_MUTEX_DESTROY(&task_mut);
H
HexToString 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    fetch_init = false;
    outLodTensorVector.clear();
  }

  void clear(){
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
    index.store(0, butil::memory_order_relaxed);
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
H
HexToString 已提交
140
    outLodTensorVector.clear();
W
wangguibao 已提交
141
  }
142

H
HexToString 已提交
143
  bool check_feedvar_valid(size_t feedvar_index) {
144 145 146 147 148 149 150 151 152 153 154 155 156
    if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
      LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
      return 0;
    }

    if ((*inVectorT_ptr)[feedvar_index].shape.size() <= 0) {
      LOG(ERROR) << "feedvar[" << feedvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
157 158 159 160 161 162 163 164
  bool combine_task_valid(Task* other_task) {
    // TODO(HexToString): auto-padding
    // 除最外层的shape外,内层shape应一致才能合并。
    // 否则跳出循环,放入下一个batchTask中。
    // 以此保证batch.append_task(task)中的task的内层shape相同。
    if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
      return false;
    }
165

H
HexToString 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    // 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
    // 所以要求该feedvar必须相等,才能合并。
    // 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
    for (size_t feedvar_index = 0;
         feedvar_index < set_feed_nobatch_index.size();
         ++feedvar_index) {
      int result =
          std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
                      (*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
                      (*inVectorT_ptr)[feedvar_index].data.length());
      if (result != 0) return false;
    }
    return true;
  }

  size_t feedvar_batch_size(size_t feedvar_index) {
182 183 184
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
185 186 187 188 189 190 191 192 193
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
        (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
      return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
194 195 196
    return (*inVectorT_ptr)[feedvar_index].shape[0];
  }

H
HexToString 已提交
197
  size_t feedvar_element_bytesize(size_t feedvar_index) {
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
    int dtype = (*inVectorT_ptr)[feedvar_index].dtype;
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
219
  size_t feedvar_element_num(size_t feedvar_index) {
220 221 222
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
223
    size_t element_num = 1;
224 225
    if ((*inVectorT_ptr)[feedvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
H
HexToString 已提交
226 227
      // [10,1] = [10], so if shape[1] doesn`t exist.
      // should return 1.
228 229 230
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
231
    for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
232 233 234 235 236
      element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
237
  size_t feedvar_bytesize(size_t feedvar_index) {
238 239 240 241
    return feedvar_element_num(feedvar_index) *
           feedvar_element_bytesize(feedvar_index);
  }

H
HexToString 已提交
242
  ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
243 244 245 246 247 248 249 250
    if (!check_feedvar_valid(feedvar_index)) {
      return ShapeVector();
    }
    return ShapeVector{(*inVectorT_ptr)[feedvar_index].shape.begin() + 1,
                       (*inVectorT_ptr)[feedvar_index].shape.end()};
  }

  VectorOfShapeVector feedvar_shape_nobatch() {
H
HexToString 已提交
251 252 253 254 255
    VectorOfShapeVector vector_of_feedvar_shape_nobatch;
    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
         ++feedvar_index) {
      vector_of_feedvar_shape_nobatch.push_back(
          feedvar_shape_nobatch(feedvar_index));
256 257 258 259
    }
    return vector_of_feedvar_shape_nobatch;
  }

H
HexToString 已提交
260 261 262 263 264 265 266 267 268 269
  // For each feedvar, batch should be 1 or batch_size.
  // if feedvar-1: batch_size = 1 (always not batch).
  // feedvar-2: batch_size = n,  batch = n.
  // this function is not thread safe. only called when task is creating.
  bool task_init() {
    total_feed_batch = feedvar_batch_size(0);
    // which means error.
    if (total_feed_batch <= 0) return false;

    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
270
         ++feedvar_index) {
H
HexToString 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
      // feedvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
        // which means error.
        if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
          return false;
        } else {
          // which means feedvar shape[0] = 1.
          // shape[0] does not change with batch
          set_feed_nobatch_index.insert(feedvar_index);
          total_feed_batch =
              std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
        }
      }
      // 将lod feedvar index加入到vector中。
      if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
          (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
        set_feed_lod_index.insert(feedvar_index);
293 294
      }
    }
H
HexToString 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    return true;
  }

  size_t batch_size() { return total_feed_batch; }

  // start_batch range is 0~batch_size, end_batch range is 1~batch_size
  // start_batch should not be included, end_batch > start_batch
  // return is (start_batch, end_batch] = [start_batch+1,end_batch]
  // for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
  // [start_batch,end_batch-1] = [start_batch,end_batch)
  // for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
  // [lod[start_batch],lod[end_batch])
  // for nobatch, shape0_index = [0,1)
  // 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
  // myindex <shape0_index[1];myindex++)即可.

  // 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
  // 3],即取batch=2,3.
  // 此时lod=[3,4,6],处理后得到[1,3]
  // 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
  std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
                                                        size_t start_batch,
                                                        size_t end_batch) {
    std::vector<std::vector<size_t>> feature_vector;
    // feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
    // feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
    // feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
    // feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。

    // if 为 nobatch feedvar情况。
    // else if 为带lod的feedvar情况。
    // else为不带lod 普通feedvar情况。
    if (set_feed_nobatch_index.size() > 0 &&
        set_feed_nobatch_index.find(feedvar_index) !=
            set_feed_nobatch_index.end()) {
      feature_vector = {{0, 1}, {}, {1}};
    } else if (set_feed_lod_index.size() > 0 &&
               set_feed_lod_index.find(feedvar_index) !=
                   set_feed_lod_index.end()) {
      std::vector<size_t> feed_lod_vector(end_batch - start_batch);
      for (size_t lod_index = start_batch + 1, vector_index = 0;
           lod_index < end_batch + 1;
           ++lod_index, ++vector_index) {
        feed_lod_vector[vector_index] =
            (*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
            (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
341
      }
H
HexToString 已提交
342 343 344 345 346 347
      size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
      size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
      feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
      // feature_vector.push_back(feed_lod_vector);
    } else {
      feature_vector = {{start_batch, end_batch}};
348
    }
H
HexToString 已提交
349
    return feature_vector;
350 351
  }

H
HexToString 已提交
352 353 354 355 356 357 358
  bool combine_taskmeta() {
    // 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
    // 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
    if (vector_fetch_lod_index.size() > 0 && taskmeta_num > 1) {
      for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
        size_t data_length = 0;
        size_t lod_length = 0;
H
HexToString 已提交
359
        size_t total_shape0 = 0;
H
HexToString 已提交
360 361 362
        size_t feedvar_index = vector_fetch_lod_index[index];
        // 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
H
HexToString 已提交
363
             ++taskmeta_index) {
H
HexToString 已提交
364 365 366
          data_length +=
              outLodTensorVector[taskmeta_index][index].data.length();
          lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
H
HexToString 已提交
367
          total_shape0 += outLodTensorVector[taskmeta_index][index].shape[0];
H
HexToString 已提交
368 369 370
        }
        // 一次性扩容PaddleTensor中的data和lod
        paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
B
bjjwwang 已提交
371 372 373 374 375 376
        
        void* databuf_data = MempoolWrapper::instance().malloc(data_length,memoryPtr);
        paddle::PaddleBuf paddleBuf(databuf_data, data_length);
        fetchVarTensor.data = paddleBuf;
         
        //fetchVarTensor.data.Resize(data_length);
H
HexToString 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        // task中的lod补0
        if (fetchVarTensor.lod.size() <= 0) {
          fetchVarTensor.lod.push_back({0});
        } else if (fetchVarTensor.lod[0].size() <= 0) {
          fetchVarTensor.lod[0].push_back(0);
        }
        fetchVarTensor.lod[0].resize(lod_length + 1, 0);

        //
        size_t data_length_offset = 0;
        size_t lod_length_offset = 0;
        size_t once_data_length = 0;
        size_t once_lod_length = 0;
        size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
H
HexToString 已提交
392
             ++taskmeta_index) {
H
HexToString 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
          void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
          void* source_ptr =
              outLodTensorVector[taskmeta_index][index].data.data();
          once_data_length =
              outLodTensorVector[taskmeta_index][index].data.length();
          memcpy(dst_ptr, source_ptr, once_data_length);
          once_lod_length =
              outLodTensorVector[taskmeta_index][index].lod[0].size();
          for (size_t once_index = 0; once_index < once_lod_length;
               ++once_index) {
            fetchVarTensor.lod[0][lod_length_offset + 1] =
                last_lod_value +
                outLodTensorVector[taskmeta_index][index].lod[0][once_index];
          }
          data_length_offset += once_data_length;
          lod_length_offset += once_lod_length;
        }
      }
411
    }
H
HexToString 已提交
412
    return true;
413
  }
H
HexToString 已提交
414

H
HexToString 已提交
415 416
  bool task_fetch_init(BatchTasks<TaskT>& batchTask);
  bool task_fetch_create(BatchTasks<TaskT>& batchTask);
W
wangguibao 已提交
417 418
};

419 420 421 422 423 424 425 426 427 428 429 430
// `Several Task` or `part of batch in Task` can be a TaskMeta.
// Task is the original Request from User.
// For example, the batch of Task is 30. There are 4 Requests.
// The batch of BatchTasks is 100, which means we can deal 100 batch 1 time.
// TaskMeta-1:{task-1,0,30} TaskMeta-2:{task-2,0,30} TaskMeta-3:{task-3,0,30}
// but the last Task will be divided to 2 TaskMeta.
// TaskMeta-4:{task-4,0,10} TaskMeta-5:{task-4,10,30}.
// TaskMeta-1 ~ TaskMeta-4 will be inside BatchTasks-1.
// TaskMeta-5 will be inside BatchTasks-2.

// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
H
HexToString 已提交
431
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
432 433
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
H
HexToString 已提交
434 435 436 437 438

// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
W
wangguibao 已提交
439
template <typename TaskT>
W
wangguibao 已提交
440
struct TaskMeta {
H
HexToString 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
  TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
      : task(ptr),
        begin(start),
        end(start + add),
        taskmeta_index(taskmeta_index) {
    feedvar_num = ptr->inVectorT_ptr->size();
    for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
         ++feedvar_index) {
      std::vector<std::vector<size_t>> feature =
          ptr->get_feature_by_batch(feedvar_index, start, start + add);
      feed_shape0_range.push_back(feature[0]);
      feedvar_type.push_back(feature.size());
      if (feature.size() == 1) {
        feed_lod_vector.push_back({});
      } else if (feature.size() == 2) {
        feed_lod_vector.push_back(feature[1]);
      } else {
        feed_lod_vector.push_back({});
      }
    }
  }
W
wangguibao 已提交
462 463 464 465

  TaskT* task;
  size_t begin;
  size_t end;
H
HexToString 已提交
466 467 468 469 470
  size_t feedvar_num;
  size_t taskmeta_index;
  std::vector<std::vector<size_t>> feed_shape0_range;
  std::vector<std::vector<size_t>> feed_lod_vector;
  std::vector<size_t> feedvar_type;
W
wangguibao 已提交
471 472
};

473 474 475
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
H
HexToString 已提交
476 477
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
W
wangguibao 已提交
478
template <typename TaskT>
W
wangguibao 已提交
479
class BatchTasks {
W
wangguibao 已提交
480 481 482 483
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
  typedef TaskMeta<TaskT> TaskMetaT;
H
HexToString 已提交
484 485 486 487 488
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
  typedef std::vector<size_t> LodVector;
  typedef std::vector<LodVector> PaddleTensorLod;
  friend TaskT;
W
wangguibao 已提交
489

H
HexToString 已提交
490
  explicit BatchTasks(size_t batch_size,
H
HexToString 已提交
491
                      bool overrun = false,
H
HexToString 已提交
492
                      bool allow_split_request = true)
W
wangguibao 已提交
493 494
      : _batch_size(batch_size),
        _rem_size(batch_size),
H
HexToString 已提交
495
        _overrun(overrun),
H
HexToString 已提交
496
        _allow_split_request(allow_split_request) {
W
wangguibao 已提交
497
    _batch_in.clear();
498
    _batch_in_offset.clear();
H
HexToString 已提交
499 500 501 502
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
503
    _batch_out.clear();
504
    _batch_out_offset.clear();
H
HexToString 已提交
505
    _total_fetch_batch = 0;
506
    _taskmeta_vector.clear();
H
HexToString 已提交
507 508
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
509 510 511 512
  }

  ~BatchTasks() {
    _batch_in.clear();
513
    _batch_in_offset.clear();
H
HexToString 已提交
514 515 516 517
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
518
    _batch_out.clear();
519
    _batch_out_offset.clear();
H
HexToString 已提交
520
    _total_fetch_batch = 0;
521
    _taskmeta_vector.clear();
H
HexToString 已提交
522 523
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
524 525 526
  }

  // synchronized operation
527
  // because Upper level callers of this function have already locked.
H
HexToString 已提交
528
  // 能进到此函数的task都是同类task,在该函数之前已保证了这点。
W
wangguibao 已提交
529 530
  size_t append_task(TaskT* task) {
    size_t add = std::min(task->rem, _rem_size);
H
HexToString 已提交
531
    // when _overrun == true, it means always take a whole task as TaskMeta
H
HexToString 已提交
532 533
    // we can temporary breakthrough the limit of BatchTask`s capacity
    // BatchTask`s capacity is _batch_size or _rem_size
H
HexToString 已提交
534
    if (_overrun) {
W
wangguibao 已提交
535
      add = task->rem;
W
wangguibao 已提交
536
    }
537
    int start_index = task->batch_size() - task->rem;
H
HexToString 已提交
538 539
    TaskMetaT tm(task, start_index, add, task->taskmeta_num);
    task->taskmeta_num += 1;
540
    _taskmeta_vector.push_back(tm);
H
HexToString 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    if (_batch_in_offset.size() == 0) {
      _batch_in_offset.resize(tm.feedvar_num, 0);
    }
    if (_total_shape0_batch_in.size() == 0) {
      _total_shape0_batch_in.resize(tm.feedvar_num, 0);
    }
    if (_batch_in_lod.size() == 0) {
      PaddleTensorLod null_lod;
      _batch_in_lod.resize(tm.feedvar_num, null_lod);
    }
    _total_feed_batch += add;
    for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
         ++feedvar_index) {
      if (tm.feedvar_type[feedvar_index] == 1) {
        // 普通的非lod feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      } else if (tm.feedvar_type[feedvar_index] == 2) {
        // lod类型的feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
        // 在Lod最前面加0
        if (_batch_in_lod[feedvar_index].size() <= 0) {
          _batch_in_lod[feedvar_index].push_back({0});
        } else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
          _batch_in_lod[feedvar_index][0].push_back(0);
        }
        // 将lod加上前一组lod的结尾最大值,组合Lod
        size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
        for (size_t lod_index = 0;
             lod_index < tm.feed_lod_vector[feedvar_index].size();
             ++lod_index) {
          _batch_in_lod[feedvar_index][0].push_back(
              last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
        }
      } else {
        // tm.feedvar_type[feedvar_index] == 3
        // nobatch类型的feedvar.
        // 此时不累加,且值应为1
        _total_shape0_batch_in[feedvar_index] =
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      }
    }
W
wangguibao 已提交
589 590 591 592 593
    task->rem -= add;
    _rem_size -= add;
    return _rem_size;
  }

594 595
  static bool check_valid(const typename TaskT::InVectorT& in,
                          const typename TaskT::OutVectorT& out,
W
wangguibao 已提交
596 597 598 599 600 601 602
                          bool align) {
    (void)in;
    (void)out;
    (void)align;
    return true;
  }

603 604 605 606 607 608 609 610
  // this should be modified totally.
  // maybe we don`t need to do this inside the BatchTasks.
  // we can do the copy work outside the BatchTasks.
  // cause maybe next time we don`t need to do the extra copy.
  // directly copy the every Task into the Predictor.

  // batch.merge_tasks() is thread-safe function
  // cause batch is a local variable and Task is just read, not written.
H
HexToString 已提交
611

W
wangguibao 已提交
612
  void merge_tasks() {
613 614 615 616 617 618 619
    if (_taskmeta_vector.size() <= 0) {
      return;
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskMetaT& tm = _taskmeta_vector[ti];

H
HexToString 已提交
620 621
      for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
           ++feedvar_index) {
622
        const paddle::PaddleTensor& feedVarTensor =
H
HexToString 已提交
623 624
            (*tm.task->inVectorT_ptr)[feedvar_index];
        size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
625 626

        if (ti == 0) {
H
HexToString 已提交
627
          // Create the entire tensor at once
628 629 630 631 632 633
          // for now, we assume that every task feedvar_bytesize is the same.
          // which means we dont support auto embedding.
          // but for different feedvar, it is different.
          paddle::PaddleTensor paddleTensor;
          paddleTensor.dtype = feedVarTensor.dtype;
          paddleTensor.name = feedVarTensor.name;
H
HexToString 已提交
634
          paddleTensor.lod = _batch_in_lod[feedvar_index];
635
          paddleTensor.shape = feedVarTensor.shape;
H
HexToString 已提交
636
          paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
B
bjjwwang 已提交
637 638 639 640
          size_t databuf_size = feedvar_bytesize * _total_shape0_batch_in[feedvar_index];
          void* databuf_data = MempoolWrapper::instance().malloc(databuf_size);
          paddle::PaddleBuf paddleBuf(databuf_data, databuf_size);
          paddleTensor.data = paddleBuf;
641 642 643
          _batch_in.push_back(paddleTensor);
        }

H
HexToString 已提交
644 645
        void* dst_ptr = _batch_in[feedvar_index].data.data() +
                        _batch_in_offset[feedvar_index];
646
        void* source_ptr =
H
HexToString 已提交
647 648 649 650 651
            feedVarTensor.data.data() +
            feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
        size_t length =
            feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
                                tm.feed_shape0_range[feedvar_index][0]);
652
        memcpy(dst_ptr, source_ptr, length);
H
HexToString 已提交
653 654 655
        // nobatch类型的feedvar,不叠加.
        if (tm.feedvar_type[feedvar_index] != 3)
          _batch_in_offset[feedvar_index] += length;
W
wangguibao 已提交
656
      }
W
wangguibao 已提交
657
    }
W
wangguibao 已提交
658
  }
W
wangguibao 已提交
659

H
HexToString 已提交
660
  bool check_fetchvar_valid(size_t fetchvar_index) {
661 662 663 664 665 666 667 668 669 670 671 672 673
    if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
      LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
      return 0;
    }

    if (_batch_out[fetchvar_index].shape.size() <= 0) {
      LOG(ERROR) << "fetchvar[" << fetchvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
674
  size_t fetchvar_element_bytesize(size_t fetchvar_index) {
675 676 677
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
678
    size_t dtype = _batch_out[fetchvar_index].dtype;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
696
  size_t fetchvar_element_num(size_t fetchvar_index) {
697 698 699
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
700
    size_t element_num = 1;
701 702 703 704 705
    if (_batch_out[fetchvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
706
    for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
707 708 709 710 711
      element_num *= _batch_out[fetchvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
712
  size_t fetchvar_bytesize(size_t fetchvar_index) {
713 714 715 716
    return fetchvar_element_num(fetchvar_index) *
           fetchvar_element_bytesize(fetchvar_index);
  }

H
HexToString 已提交
717 718 719
  size_t fetchvar_batch_size(size_t fetchvar_index) {
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
720
    }
H
HexToString 已提交
721 722 723 724 725 726 727 728 729 730
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if (_batch_out[fetchvar_index].lod.size() > 0 &&
        _batch_out[fetchvar_index].lod[0].size() > 0) {
      return _batch_out[fetchvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
    return _batch_out[fetchvar_index].shape[0];
731 732
  }

H
HexToString 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746
  size_t fetchvar_batch_size() { return _total_fetch_batch; }

  bool deal_batch_out() {
    _total_fetch_batch = fetchvar_batch_size(0);
    if (_total_fetch_batch <= 0) return false;
    for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
         ++fetchvar_index) {
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
      // fetchvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
B
bjjwwang 已提交
747 748
        if(fetchvar_batch_size(fetchvar_index) <= 0){
          // which means error.
H
HexToString 已提交
749
          return false;
B
bjjwwang 已提交
750
        }else if(fetchvar_batch_size(fetchvar_index) == 1){
H
HexToString 已提交
751 752 753 754 755
          // which means fetchvar shape[0] = 1.
          // shape[0] does not change with batch
          set_fetch_nobatch_index.insert(fetchvar_index);
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
B
bjjwwang 已提交
756 757 758 759 760 761 762 763 764 765 766 767
        }else if(_total_fetch_batch == 1){
          //这时意味着,之前的fetchvar shape[0] 全部都= 1
          //当前的fetchvar shape[0] > 1
          //所以,之前的都是no_batch
          for(size_t temp_index = fetchvar_index-1; temp_index >= 0; --temp_index){
            set_fetch_nobatch_index.insert(fetchvar_index);
          }
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
        }else{
          // which means error.
          return false;
H
HexToString 已提交
768 769 770 771 772 773 774
        }
      }
      // 将lod fetchvar index加入到vector中。
      if (_batch_out[fetchvar_index].lod.size() > 0 &&
          _batch_out[fetchvar_index].lod[0].size() > 0) {
        vector_fetch_lod_index.push_back(fetchvar_index);
      }
775
    }
H
HexToString 已提交
776
    return true;
777 778
  }

W
wangguibao 已提交
779
  void notify_tasks() {
780 781 782 783
    if (_taskmeta_vector.size() <= 0) {
      LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
      return;
    }
H
HexToString 已提交
784 785 786 787 788
    // 根据_batch_out,求出输出的整体batch
    // 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
    deal_batch_out();
    // 若输出的batch不是1,且不与输入batch对应,则错误
    if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
789
      LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
W
wangguibao 已提交
790
      return;
W
wangguibao 已提交
791 792
    }

H
HexToString 已提交
793
    size_t fetchvar_num = _batch_out.size();
794 795 796 797 798 799 800 801
    if (_batch_out_offset.size() == 0) {
      _batch_out_offset.resize(fetchvar_num, 0);
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskT* task = _taskmeta_vector[ti].task;
      size_t begin = _taskmeta_vector[ti].begin;
      size_t end = _taskmeta_vector[ti].end;
W
wangguibao 已提交
802
      size_t add = end - begin;
H
HexToString 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
      size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
      // 对task中的outVectorT_ptr进行初始化
      // 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
      if (!task->task_fetch_init(*this)) {
        LOG(ERROR) << " task_fetch_init error.";
        return;
      }
      size_t fetch_lod_index = 0;

      for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
           ++fetchvar_index) {
        size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);

        if (set_fetch_nobatch_index.size() > 0 &&
            set_fetch_nobatch_index.find(fetchvar_index) !=
                set_fetch_nobatch_index.end()) {
          // nobatch fetchvar情况
          // 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr = fetchVarTensor.data.data();
          size_t length = fetchvar_bytesize_index * 1;
          void* source_ptr = _batch_out[fetchvar_index].data.data();
          memcpy(dst_ptr, source_ptr, length);
        } else if (vector_fetch_lod_index.size() > 0 &&
                   std::find(vector_fetch_lod_index.begin(),
                             vector_fetch_lod_index.end(),
                             fetchvar_index) != vector_fetch_lod_index.end()) {
          // lod fetchvar情况,此时无法确定总的shape[0]
          // 根据task中的task_num总数开辟task_num个临时空间
          // 每个lod型的fetchvar拷贝到对应的临时空间中
          // 最后再计算临时空间的总量,合并fetchvar和lod
          size_t last_batch = _batch_out_offset[fetchvar_index];
          size_t shape0_index_start =
              _batch_out[fetchvar_index].lod[0][last_batch];
          size_t shape0_index_end =
              _batch_out[fetchvar_index].lod[0][last_batch + add];
          size_t shape0_length = shape0_index_end - shape0_index_start;
          // task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
          // 此时,先拷入task->outLodTensorVector[taskmeta_index]
          // 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
          if (task->taskmeta_num > 1) {
            paddle::PaddleTensor& fetchVarTensor =
                task->outLodTensorVector[taskmeta_index][fetch_lod_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
848
            fetchVarTensor.shape[0] = shape0_length;
B
bjjwwang 已提交
849 850 851 852 853

            void* databuf_data = MempoolWrapper::instance().malloc(length,task->memoryPtr);
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
            //fetchVarTensor.data.Resize(length);
H
HexToString 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);
            // 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({});
            }
            fetchVarTensor.lod[0].resize(add, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 0;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          } else {
            // task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
            // 此时resize后,直接写入task->outVectorT_ptr中即可。
            paddle::PaddleTensor& fetchVarTensor =
                (*task->outVectorT_ptr)[fetchvar_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
878
            fetchVarTensor.shape[0] = shape0_length;
B
bjjwwang 已提交
879 880 881 882 883 884
            
            void* databuf_data = MempoolWrapper::instance().malloc(length,task->memoryPtr);
            paddle::PaddleBuf paddleBuf(databuf_data, length);
            fetchVarTensor.data = paddleBuf;
            
            //fetchVarTensor.data.Resize(length);
H
HexToString 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);

            // task中的lod补0
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({0});
            } else if (fetchVarTensor.lod[0].size() <= 0) {
              fetchVarTensor.lod[0].push_back(0);
            }
            // 将合并的lod信息对应的batch,拆分到task中。
            // 注意,此时需要去掉前面lod导致的前置积累。
            // 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
            // 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
            // [0,2,5]
            // 第二组,都需要减5,得到[2,5],这样处理才对。
            fetchVarTensor.lod[0].resize(add + 1, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 1;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          }
          fetch_lod_index++;
        } else {
          // 普通fetchvar情况,此时该Task总的fetchvar_batch =
          // 输入的总的batch_size()
          // 输出的batch应与输入的batch对应相等。
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr =
              fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
          size_t length = fetchvar_bytesize_index * add;
          void* source_ptr =
              _batch_out[fetchvar_index].data.data() +
              _batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;

          memcpy(dst_ptr, source_ptr, length);
W
wangguibao 已提交
928
        }
H
HexToString 已提交
929
        _batch_out_offset[fetchvar_index] += add;
W
wangguibao 已提交
930
      }
W
wangguibao 已提交
931

H
HexToString 已提交
932 933 934
      // index是局部变量,fetch_add是原子操作,成功则返回原值。
      // 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
      // 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
W
wangguibao 已提交
935
      size_t index = task->index.fetch_add(add);
936
      if ((index + add) >= task->batch_size()) {
H
HexToString 已提交
937
        task->combine_taskmeta();
W
wangguibao 已提交
938 939
        char c = 0;
        while (write(task->write_fd, &c, 1) != 1 && errno == EINTR) {
W
wangguibao 已提交
940
        }
W
wangguibao 已提交
941 942
        butil::return_object(task);
      }
W
wangguibao 已提交
943
    }
W
wangguibao 已提交
944
  }
W
wangguibao 已提交
945

946
  const typename TaskT::InVectorT& in() const { return _batch_in; }
W
wangguibao 已提交
947

948
  typename TaskT::OutVectorT& out() { return _batch_out; }
W
wangguibao 已提交
949

950
  size_t task_size() { return _taskmeta_vector.size(); }
W
wangguibao 已提交
951

H
HexToString 已提交
952 953
  const size_t get_rem_size() { return _rem_size; }

H
HexToString 已提交
954
  bool get_overrun() { return _overrun; }
H
HexToString 已提交
955 956 957

  bool get_allow_split_request() { return _allow_split_request; }

W
wangguibao 已提交
958
 private:
959 960
  std::vector<TaskMetaT> _taskmeta_vector;
  typename TaskT::InVectorT _batch_in;
H
HexToString 已提交
961
  std::vector<size_t> _batch_in_offset;
H
HexToString 已提交
962 963 964 965
  std::vector<size_t> _total_shape0_batch_in;
  size_t _total_feed_batch;
  std::vector<PaddleTensorLod> _batch_in_lod;

966
  typename TaskT::OutVectorT _batch_out;
H
HexToString 已提交
967
  std::vector<size_t> _batch_out_offset;
H
HexToString 已提交
968 969 970 971 972 973
  // std::vector<size_t> _total_shape0_batch_out;
  size_t _total_fetch_batch;
  // std::vector<PaddleTensorLod>  _batch_out_lod;
  std::set<size_t> set_fetch_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;

W
wangguibao 已提交
974 975
  size_t _rem_size;
  size_t _batch_size;
H
HexToString 已提交
976
  bool _overrun;
H
HexToString 已提交
977
  bool _allow_split_request;
W
wangguibao 已提交
978 979
};

W
wangguibao 已提交
980
// BSF task handle
H
HexToString 已提交
981 982 983 984 985 986 987
// TaskHandler is the handle of Task.
// `read_fd` is used for receive signal in brpc Thread.
// 'write_fd' is used for write signal in bsf Thread.
// when TaskMeta is done, bsf Thread will write to 'write_fd'.
// brpc Thread is keeping reading 'read_fd' in a while loop.
// brpc Thread will receive signal when TaskMeta is done.
// so `read_fd` and 'write_fd' is used for communicate in different Thread.
W
wangguibao 已提交
988
template <typename TaskT>
W
wangguibao 已提交
989
struct TaskHandler {
W
wangguibao 已提交
990 991
  int read_fd;
  int write_fd;
W
wangguibao 已提交
992

W
wangguibao 已提交
993 994 995
  TaskHandler() : read_fd(-1), write_fd(-1) {
    // do nothing
  }
W
wangguibao 已提交
996

W
wangguibao 已提交
997 998 999 1000
  explicit TaskHandler(TaskT const& task)
      : read_fd(task.read_fd), write_fd(task.write_fd) {
    // do nothing
  }
W
wangguibao 已提交
1001

W
wangguibao 已提交
1002
  inline bool valid() const { return read_fd >= 0 && write_fd >= 0; }
W
wangguibao 已提交
1003

W
wangguibao 已提交
1004 1005 1006 1007
  static TaskHandler<TaskT>& valid_handle() {
    static TaskHandler<TaskT> vhandle;
    return vhandle;
  }
W
wangguibao 已提交
1008 1009
};

H
HexToString 已提交
1010
// TaskExecutor is a Thread pool.
W
wangguibao 已提交
1011
template <typename TaskT>
W
wangguibao 已提交
1012 1013
class TaskExecutor;

H
HexToString 已提交
1014
// ThreadContext is used for start a bsf Thread.
W
wangguibao 已提交
1015
template <typename TaskT>
W
wangguibao 已提交
1016
struct ThreadContext {
W
wangguibao 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  TaskExecutor<TaskT>* executor;
  void* user_thread_context;
  THREAD_T tid;
  int init_status;

  ThreadContext()
      : executor(NULL), user_thread_context(NULL), tid(-1), init_status(0) {
    // do nothing
  }

  ~ThreadContext() {
    tid = -1;
    executor = NULL;
    user_thread_context = NULL;
    init_status = 0;
  }
W
wangguibao 已提交
1033 1034
};

H
HexToString 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043
// TaskExecutor is a Thread pool.
// Each Model corresponding to a Model.
// TaskT is actually a Request preprocessed by ReaderOp.
// TaskT will be divided as TaskMeta which will be
// put into _task_queue in brpc-Thread by schedule().
// TaskHander will be returned to brpc-Thread.
// start() function will create `thread_num` bsf Threads.
// every bsf Thread check the _task_queue and take TaskMeta from it.
// when a Task`s all TaskMeta is done, TaskHander will be noticed.
W
wangguibao 已提交
1044
template <typename TaskT>
W
wangguibao 已提交
1045
class TaskExecutor {
W
wangguibao 已提交
1046 1047 1048
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
1049 1050
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1051
  typedef std::vector<TaskT> TaskArrayT;
1052
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
H
HexToString 已提交
1053 1054
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
1055

W
wangguibao 已提交
1056 1057 1058 1059 1060 1061
  TaskExecutor()
      : _stop(false),
        _thread_init_fn(NULL),
        _thread_reset_fn(NULL),
        _user_thread_contexts(NULL),
        _batch_size(DEFAULT_BATCH_SIZE),
H
HexToString 已提交
1062
        _overrun(false),
W
wangguibao 已提交
1063 1064 1065 1066 1067
        _fn(NULL) {
    THREAD_MUTEX_INIT(&_mut, NULL);
    THREAD_COND_INIT(&_cond, NULL);
    _task_queue.clear();
  }
W
wangguibao 已提交
1068

W
wangguibao 已提交
1069 1070 1071 1072
  ~TaskExecutor() {
    THREAD_MUTEX_DESTROY(&_mut);
    THREAD_COND_DESTROY(&_cond);
  }
W
wangguibao 已提交
1073

H
HexToString 已提交
1074 1075 1076 1077 1078
  // cause vector.resize will use copy or move construct.
  TaskExecutor(TaskExecutor<TaskT>&& other) noexcept {
    if (this != &other) {
      TaskExecutor();
    }
W
wangguibao 已提交
1079
  }
W
wangguibao 已提交
1080

W
wangguibao 已提交
1081
  void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
W
wangguibao 已提交
1082

H
HexToString 已提交
1083
  void set_overrun(bool overrun) { _overrun = overrun; }
H
HexToString 已提交
1084 1085 1086 1087

  void set_allow_split_request(bool allow_split_request) {
    _allow_split_request = allow_split_request;
  }
W
wangguibao 已提交
1088

W
wangguibao 已提交
1089 1090 1091 1092 1093
  void set_thread_init_fn(boost::function<int(void*)> init_fn,
                          void** contexts = NULL) {
    _thread_init_fn = init_fn;
    _user_thread_contexts = contexts;
  }
W
wangguibao 已提交
1094

W
wangguibao 已提交
1095 1096 1097 1098
  void set_thread_reset_fn(boost::function<int(void*)> reset_fn) {
    _thread_reset_fn = reset_fn;
  }

1099
  void set_thread_callback_fn(boost::function<void(const void*, void*)> cb) {
W
wangguibao 已提交
1100 1101
    _fn = cb;
  }
W
wangguibao 已提交
1102

W
wangguibao 已提交
1103 1104
  int start(uint32_t thread_num, uint32_t init_timeout_sec = 0);
  void stop();
W
wangguibao 已提交
1105

W
wangguibao 已提交
1106
  static void* thread_entry(void* args);
W
wangguibao 已提交
1107

W
wangguibao 已提交
1108
  int work(ThreadContext<TaskT>* context);
W
wangguibao 已提交
1109

B
bjjwwang 已提交
1110
  TaskHandler<TaskT> schedule(const void*, void*, MempoolRegion* memoryPtr);
W
wangguibao 已提交
1111

H
HexToString 已提交
1112
  bool move_task_to_batch(BatchTasks<TaskT>& batchTask);  // NOLINT
W
wangguibao 已提交
1113

H
HexToString 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
 private:
  TaskExecutor(TaskExecutor<TaskT> const& other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> const& other) = delete;
  /*
  TaskExecutor(TaskExecutor<TaskT> && other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> && other) = delete;
  */

W
wangguibao 已提交
1124
  bool _stop;
W
wangguibao 已提交
1125

W
wangguibao 已提交
1126 1127 1128
  // can't use boost::mutex, because some stupid macro
  THREAD_MUTEX_T _mut;
  THREAD_COND_T _cond;
W
wangguibao 已提交
1129

H
HexToString 已提交
1130
  std::list<TaskT*> _task_queue;
W
wangguibao 已提交
1131

W
wangguibao 已提交
1132 1133 1134
  boost::function<int(void*)> _thread_init_fn;
  boost::function<int(void*)> _thread_reset_fn;
  void** _user_thread_contexts;
W
wangguibao 已提交
1135

W
wangguibao 已提交
1136
  std::vector<ThreadContext<TaskT>*> _thread_contexts;
W
wangguibao 已提交
1137

W
wangguibao 已提交
1138
  size_t _batch_size;
H
HexToString 已提交
1139
  bool _overrun;
H
HexToString 已提交
1140
  bool _allow_split_request;
W
wangguibao 已提交
1141

1142
  boost::function<void(const void*, void*)> _fn;
W
wangguibao 已提交
1143 1144
};

H
HexToString 已提交
1145 1146 1147
// TaskExecutorVector is a SingleTon class.
// Each Model corresponding to a TaskExecutor.
// So we need several TaskExecutor when there are more than 1 Model.
H
HexToString 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
template <typename TaskT>
class TaskExecutorVector {
 public:
  static TaskExecutorVector<TaskT>& instance() {
    static TaskExecutorVector<TaskT> singleton;
    return singleton;
  }

  void resize(int size) { _vector_executor.resize(size); }

H
HexToString 已提交
1158 1159 1160 1161
  TaskExecutor<TaskT>& operator[](int task_index) {
    if (_vector_executor.size() <= task_index || task_index <= -1) {
      LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
      throw "_vector_executor.size() <= task_index or <= -1";
H
HexToString 已提交
1162
    }
H
HexToString 已提交
1163
    return _vector_executor[task_index];
H
HexToString 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
  }

 private:
  TaskExecutorVector() = default;
  TaskExecutorVector(const TaskExecutorVector<TaskT>& other) = delete;
  TaskExecutorVector& operator=(const TaskExecutorVector<TaskT>& other) =
      delete;
  TaskExecutorVector(TaskExecutorVector<TaskT>&& other) = delete;
  TaskExecutorVector& operator=(TaskExecutorVector<TaskT>&& other) = delete;
  std::vector<TaskExecutor<TaskT>> _vector_executor;
};

H
HexToString 已提交
1176 1177 1178 1179 1180
// TaskManager is actually a wrapper of Request in bsf.
// TaskManager`s schedule() change Request to be TaskT.
// and divided TaskT into several TaskMeta to put into the TaskExecutor`s
// task_queue.
// wait() is a while loop to receive signal when a whole Task is done.
W
wangguibao 已提交
1181
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
1182
class TaskManager {
W
wangguibao 已提交
1183 1184
 public:
  typedef Task<InItemT, OutItemT> TaskT;
1185 1186
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1187

H
HexToString 已提交
1188 1189
  explicit TaskManager(uint32_t model_index)  // NOLINT
      : _model_index(model_index) {}
W
wangguibao 已提交
1190

W
wangguibao 已提交
1191
  ~TaskManager() { wait(); }
W
wangguibao 已提交
1192

B
bjjwwang 已提交
1193
  bool schedule(const void* in, void* out, MempoolRegion* memoryPtr);  // NOLINT
W
wangguibao 已提交
1194
  void wait();
W
wangguibao 已提交
1195

W
wangguibao 已提交
1196
  inline void clear() { wait(); }
W
wangguibao 已提交
1197

W
wangguibao 已提交
1198 1199
 private:
  TaskHandler<TaskT> _task_owned;
H
HexToString 已提交
1200
  uint32_t _model_index;
W
wangguibao 已提交
1201
};  // class TaskManager
W
wangguibao 已提交
1202 1203

class AutoMutex {
W
wangguibao 已提交
1204 1205 1206 1207
 public:
  explicit AutoMutex(THREAD_MUTEX_T& mut) : _mut(mut) {
    THREAD_MUTEX_LOCK(&_mut);
  }
W
wangguibao 已提交
1208

W
wangguibao 已提交
1209
  ~AutoMutex() { THREAD_MUTEX_UNLOCK(&_mut); }
W
wangguibao 已提交
1210

W
wangguibao 已提交
1211 1212
 private:
  THREAD_MUTEX_T& _mut;
W
wangguibao 已提交
1213 1214
};

W
wangguibao 已提交
1215 1216
}  // namespace bsf
}  // namespace im
W
wangguibao 已提交
1217

1218
// #include "core/predictor/framework/bsf-inl-tensor.h"
G
guru4elephant 已提交
1219
#include "core/predictor/framework/bsf-inl.h"