bsf.h 42.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16 17

#include <errno.h>
W
wangguibao 已提交
18
#include <algorithm>
H
HexToString 已提交
19
#include <cstring>
H
HexToString 已提交
20
#include <list>
H
HexToString 已提交
21
#include <set>
W
wangguibao 已提交
22
#include <vector>
W
wangguibao 已提交
23 24 25 26

#ifdef BCLOUD
#include "base/atomicops.h"
#else
W
wangguibao 已提交
27
#include "butil/atomicops.h"
W
wangguibao 已提交
28 29
#endif

G
guru4elephant 已提交
30
#include "core/predictor/common/inner_common.h"
W
wangguibao 已提交
31

W
wangguibao 已提交
32
#include "boost/function.hpp"
W
wangguibao 已提交
33

34 35 36
#include "core/predictor/framework/memory.h"
#include "paddle_inference_api.h"

W
wangguibao 已提交
37 38 39 40 41
namespace im {
namespace bsf {

static const size_t DEFAULT_BATCH_SIZE = 100;

42 43 44 45 46 47 48 49 50
// InItemT is paddle::PaddleTensor
// InVectorT std::vector<paddle::PaddleTensor>
// InVectorT means different feedvar, but not batch.
// Batch is already inside the  paddle::PaddleTensor.

// size_t `rem` records how many batch have not been put in BatchTasks.
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
H
HexToString 已提交
51 52
template <typename TaskT>
class BatchTasks;
53 54
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
W
wangguibao 已提交
55
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
56
struct Task {
57 58
  typedef std::vector<InItemT> InVectorT;
  typedef std::vector<OutItemT> OutVectorT;
W
wangguibao 已提交
59 60 61
  typedef InItemT InType;
  typedef OutItemT OutType;
  typedef Task<InItemT, OutItemT> TaskT;
H
HexToString 已提交
62
  typedef std::vector<size_t> ShapeVector;
63
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
64

W
wangguibao 已提交
65 66 67
  int read_fd;
  int write_fd;
  pid_t owner_tid;
68 69
  const InVectorT* inVectorT_ptr;
  OutVectorT* outVectorT_ptr;
W
wangguibao 已提交
70
  size_t rem;
H
HexToString 已提交
71 72 73 74 75
  size_t total_feed_batch;
  std::set<size_t> set_feed_lod_index;
  std::set<size_t> set_feed_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;
  std::set<size_t> set_fetch_nobatch_index;
W
wangguibao 已提交
76
  butil::atomic<size_t> index;
H
HexToString 已提交
77 78 79 80 81
  size_t taskmeta_num;
  THREAD_MUTEX_T task_mut;
  bool fetch_init;
  // taskmeta_num * set_feed_lod_index.size()
  std::vector<OutVectorT> outLodTensorVector;
W
wangguibao 已提交
82 83 84 85 86

  Task() {
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
87 88
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
H
HexToString 已提交
89 90 91 92
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
W
wangguibao 已提交
93
    rem = -1;
H
HexToString 已提交
94 95
    total_feed_batch = 0;
    taskmeta_num = 0;
W
wangguibao 已提交
96
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
97 98 99 100 101
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
    outLodTensorVector.clear();
  }
  ~Task() {
H
HexToString 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
115
    THREAD_MUTEX_DESTROY(&task_mut);
H
HexToString 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    fetch_init = false;
    outLodTensorVector.clear();
  }

  void clear(){
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
    rem = -1;
    total_feed_batch = 0;
    taskmeta_num = 0;
    index.store(0, butil::memory_order_relaxed);
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
H
HexToString 已提交
136
    outLodTensorVector.clear();
W
wangguibao 已提交
137
  }
138

H
HexToString 已提交
139
  bool check_feedvar_valid(size_t feedvar_index) {
140 141 142 143 144 145 146 147 148 149 150 151 152
    if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
      LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
      return 0;
    }

    if ((*inVectorT_ptr)[feedvar_index].shape.size() <= 0) {
      LOG(ERROR) << "feedvar[" << feedvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
153 154 155 156 157 158 159 160
  bool combine_task_valid(Task* other_task) {
    // TODO(HexToString): auto-padding
    // 除最外层的shape外,内层shape应一致才能合并。
    // 否则跳出循环,放入下一个batchTask中。
    // 以此保证batch.append_task(task)中的task的内层shape相同。
    if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
      return false;
    }
161

H
HexToString 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    // 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
    // 所以要求该feedvar必须相等,才能合并。
    // 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
    for (size_t feedvar_index = 0;
         feedvar_index < set_feed_nobatch_index.size();
         ++feedvar_index) {
      int result =
          std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
                      (*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
                      (*inVectorT_ptr)[feedvar_index].data.length());
      if (result != 0) return false;
    }
    return true;
  }

  size_t feedvar_batch_size(size_t feedvar_index) {
178 179 180
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
181 182 183 184 185 186 187 188 189
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
        (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
      return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
190 191 192
    return (*inVectorT_ptr)[feedvar_index].shape[0];
  }

H
HexToString 已提交
193
  size_t feedvar_element_bytesize(size_t feedvar_index) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
    int dtype = (*inVectorT_ptr)[feedvar_index].dtype;
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
215
  size_t feedvar_element_num(size_t feedvar_index) {
216 217 218
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
219
    size_t element_num = 1;
220 221
    if ((*inVectorT_ptr)[feedvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
H
HexToString 已提交
222 223
      // [10,1] = [10], so if shape[1] doesn`t exist.
      // should return 1.
224 225 226
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
227
    for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
228 229 230 231 232
      element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
233
  size_t feedvar_bytesize(size_t feedvar_index) {
234 235 236 237
    return feedvar_element_num(feedvar_index) *
           feedvar_element_bytesize(feedvar_index);
  }

H
HexToString 已提交
238
  ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
239 240 241 242 243 244 245 246
    if (!check_feedvar_valid(feedvar_index)) {
      return ShapeVector();
    }
    return ShapeVector{(*inVectorT_ptr)[feedvar_index].shape.begin() + 1,
                       (*inVectorT_ptr)[feedvar_index].shape.end()};
  }

  VectorOfShapeVector feedvar_shape_nobatch() {
H
HexToString 已提交
247 248 249 250 251
    VectorOfShapeVector vector_of_feedvar_shape_nobatch;
    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
         ++feedvar_index) {
      vector_of_feedvar_shape_nobatch.push_back(
          feedvar_shape_nobatch(feedvar_index));
252 253 254 255
    }
    return vector_of_feedvar_shape_nobatch;
  }

H
HexToString 已提交
256 257 258 259 260 261 262 263 264 265
  // For each feedvar, batch should be 1 or batch_size.
  // if feedvar-1: batch_size = 1 (always not batch).
  // feedvar-2: batch_size = n,  batch = n.
  // this function is not thread safe. only called when task is creating.
  bool task_init() {
    total_feed_batch = feedvar_batch_size(0);
    // which means error.
    if (total_feed_batch <= 0) return false;

    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
266
         ++feedvar_index) {
H
HexToString 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
      // feedvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
        // which means error.
        if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
          return false;
        } else {
          // which means feedvar shape[0] = 1.
          // shape[0] does not change with batch
          set_feed_nobatch_index.insert(feedvar_index);
          total_feed_batch =
              std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
        }
      }
      // 将lod feedvar index加入到vector中。
      if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
          (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
        set_feed_lod_index.insert(feedvar_index);
289 290
      }
    }
H
HexToString 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    return true;
  }

  size_t batch_size() { return total_feed_batch; }

  // start_batch range is 0~batch_size, end_batch range is 1~batch_size
  // start_batch should not be included, end_batch > start_batch
  // return is (start_batch, end_batch] = [start_batch+1,end_batch]
  // for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
  // [start_batch,end_batch-1] = [start_batch,end_batch)
  // for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
  // [lod[start_batch],lod[end_batch])
  // for nobatch, shape0_index = [0,1)
  // 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
  // myindex <shape0_index[1];myindex++)即可.

  // 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
  // 3],即取batch=2,3.
  // 此时lod=[3,4,6],处理后得到[1,3]
  // 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
  std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
                                                        size_t start_batch,
                                                        size_t end_batch) {
    std::vector<std::vector<size_t>> feature_vector;
    // feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
    // feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
    // feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
    // feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。

    // if 为 nobatch feedvar情况。
    // else if 为带lod的feedvar情况。
    // else为不带lod 普通feedvar情况。
    if (set_feed_nobatch_index.size() > 0 &&
        set_feed_nobatch_index.find(feedvar_index) !=
            set_feed_nobatch_index.end()) {
      feature_vector = {{0, 1}, {}, {1}};
    } else if (set_feed_lod_index.size() > 0 &&
               set_feed_lod_index.find(feedvar_index) !=
                   set_feed_lod_index.end()) {
      std::vector<size_t> feed_lod_vector(end_batch - start_batch);
      for (size_t lod_index = start_batch + 1, vector_index = 0;
           lod_index < end_batch + 1;
           ++lod_index, ++vector_index) {
        feed_lod_vector[vector_index] =
            (*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
            (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
337
      }
H
HexToString 已提交
338 339 340 341 342 343
      size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
      size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
      feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
      // feature_vector.push_back(feed_lod_vector);
    } else {
      feature_vector = {{start_batch, end_batch}};
344
    }
H
HexToString 已提交
345
    return feature_vector;
346 347
  }

H
HexToString 已提交
348 349 350 351 352 353 354
  bool combine_taskmeta() {
    // 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
    // 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
    if (vector_fetch_lod_index.size() > 0 && taskmeta_num > 1) {
      for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
        size_t data_length = 0;
        size_t lod_length = 0;
H
HexToString 已提交
355
        size_t total_shape0 = 0;
H
HexToString 已提交
356 357 358
        size_t feedvar_index = vector_fetch_lod_index[index];
        // 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
H
HexToString 已提交
359
             ++taskmeta_index) {
H
HexToString 已提交
360 361 362
          data_length +=
              outLodTensorVector[taskmeta_index][index].data.length();
          lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
H
HexToString 已提交
363
          total_shape0 += outLodTensorVector[taskmeta_index][index].shape[0];
H
HexToString 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        }
        // 一次性扩容PaddleTensor中的data和lod
        paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
        fetchVarTensor.data.Resize(data_length);
        // task中的lod补0
        if (fetchVarTensor.lod.size() <= 0) {
          fetchVarTensor.lod.push_back({0});
        } else if (fetchVarTensor.lod[0].size() <= 0) {
          fetchVarTensor.lod[0].push_back(0);
        }
        fetchVarTensor.lod[0].resize(lod_length + 1, 0);

        //
        size_t data_length_offset = 0;
        size_t lod_length_offset = 0;
        size_t once_data_length = 0;
        size_t once_lod_length = 0;
        size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
H
HexToString 已提交
383
             ++taskmeta_index) {
H
HexToString 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
          void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
          void* source_ptr =
              outLodTensorVector[taskmeta_index][index].data.data();
          once_data_length =
              outLodTensorVector[taskmeta_index][index].data.length();
          memcpy(dst_ptr, source_ptr, once_data_length);
          once_lod_length =
              outLodTensorVector[taskmeta_index][index].lod[0].size();
          for (size_t once_index = 0; once_index < once_lod_length;
               ++once_index) {
            fetchVarTensor.lod[0][lod_length_offset + 1] =
                last_lod_value +
                outLodTensorVector[taskmeta_index][index].lod[0][once_index];
          }
          data_length_offset += once_data_length;
          lod_length_offset += once_lod_length;
        }
      }
402
    }
H
HexToString 已提交
403
    return true;
404
  }
H
HexToString 已提交
405

H
HexToString 已提交
406 407
  bool task_fetch_init(BatchTasks<TaskT>& batchTask);
  bool task_fetch_create(BatchTasks<TaskT>& batchTask);
W
wangguibao 已提交
408 409
};

410 411 412 413 414 415 416 417 418 419 420 421
// `Several Task` or `part of batch in Task` can be a TaskMeta.
// Task is the original Request from User.
// For example, the batch of Task is 30. There are 4 Requests.
// The batch of BatchTasks is 100, which means we can deal 100 batch 1 time.
// TaskMeta-1:{task-1,0,30} TaskMeta-2:{task-2,0,30} TaskMeta-3:{task-3,0,30}
// but the last Task will be divided to 2 TaskMeta.
// TaskMeta-4:{task-4,0,10} TaskMeta-5:{task-4,10,30}.
// TaskMeta-1 ~ TaskMeta-4 will be inside BatchTasks-1.
// TaskMeta-5 will be inside BatchTasks-2.

// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
H
HexToString 已提交
422
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
423 424
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
H
HexToString 已提交
425 426 427 428 429

// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
W
wangguibao 已提交
430
template <typename TaskT>
W
wangguibao 已提交
431
struct TaskMeta {
H
HexToString 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
      : task(ptr),
        begin(start),
        end(start + add),
        taskmeta_index(taskmeta_index) {
    feedvar_num = ptr->inVectorT_ptr->size();
    for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
         ++feedvar_index) {
      std::vector<std::vector<size_t>> feature =
          ptr->get_feature_by_batch(feedvar_index, start, start + add);
      feed_shape0_range.push_back(feature[0]);
      feedvar_type.push_back(feature.size());
      if (feature.size() == 1) {
        feed_lod_vector.push_back({});
      } else if (feature.size() == 2) {
        feed_lod_vector.push_back(feature[1]);
      } else {
        feed_lod_vector.push_back({});
      }
    }
  }
W
wangguibao 已提交
453 454 455 456

  TaskT* task;
  size_t begin;
  size_t end;
H
HexToString 已提交
457 458 459 460 461
  size_t feedvar_num;
  size_t taskmeta_index;
  std::vector<std::vector<size_t>> feed_shape0_range;
  std::vector<std::vector<size_t>> feed_lod_vector;
  std::vector<size_t> feedvar_type;
W
wangguibao 已提交
462 463
};

464 465 466
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
H
HexToString 已提交
467 468
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
W
wangguibao 已提交
469
template <typename TaskT>
W
wangguibao 已提交
470
class BatchTasks {
W
wangguibao 已提交
471 472 473 474
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
  typedef TaskMeta<TaskT> TaskMetaT;
H
HexToString 已提交
475 476 477 478 479
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
  typedef std::vector<size_t> LodVector;
  typedef std::vector<LodVector> PaddleTensorLod;
  friend TaskT;
W
wangguibao 已提交
480

H
HexToString 已提交
481
  explicit BatchTasks(size_t batch_size,
H
HexToString 已提交
482
                      bool overrun = false,
H
HexToString 已提交
483
                      bool allow_split_request = true)
W
wangguibao 已提交
484 485
      : _batch_size(batch_size),
        _rem_size(batch_size),
H
HexToString 已提交
486
        _overrun(overrun),
H
HexToString 已提交
487
        _allow_split_request(allow_split_request) {
W
wangguibao 已提交
488
    _batch_in.clear();
489
    _batch_in_offset.clear();
H
HexToString 已提交
490 491 492 493
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
494
    _batch_out.clear();
495
    _batch_out_offset.clear();
H
HexToString 已提交
496
    _total_fetch_batch = 0;
497
    _taskmeta_vector.clear();
H
HexToString 已提交
498 499
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
500 501 502 503
  }

  ~BatchTasks() {
    _batch_in.clear();
504
    _batch_in_offset.clear();
H
HexToString 已提交
505 506 507 508
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
509
    _batch_out.clear();
510
    _batch_out_offset.clear();
H
HexToString 已提交
511
    _total_fetch_batch = 0;
512
    _taskmeta_vector.clear();
H
HexToString 已提交
513 514
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
515 516 517
  }

  // synchronized operation
518
  // because Upper level callers of this function have already locked.
H
HexToString 已提交
519
  // 能进到此函数的task都是同类task,在该函数之前已保证了这点。
W
wangguibao 已提交
520 521
  size_t append_task(TaskT* task) {
    size_t add = std::min(task->rem, _rem_size);
H
HexToString 已提交
522
    // when _overrun == true, it means always take a whole task as TaskMeta
H
HexToString 已提交
523 524
    // we can temporary breakthrough the limit of BatchTask`s capacity
    // BatchTask`s capacity is _batch_size or _rem_size
H
HexToString 已提交
525
    if (_overrun) {
W
wangguibao 已提交
526
      add = task->rem;
W
wangguibao 已提交
527
    }
528
    int start_index = task->batch_size() - task->rem;
H
HexToString 已提交
529 530
    TaskMetaT tm(task, start_index, add, task->taskmeta_num);
    task->taskmeta_num += 1;
531
    _taskmeta_vector.push_back(tm);
H
HexToString 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    if (_batch_in_offset.size() == 0) {
      _batch_in_offset.resize(tm.feedvar_num, 0);
    }
    if (_total_shape0_batch_in.size() == 0) {
      _total_shape0_batch_in.resize(tm.feedvar_num, 0);
    }
    if (_batch_in_lod.size() == 0) {
      PaddleTensorLod null_lod;
      _batch_in_lod.resize(tm.feedvar_num, null_lod);
    }
    _total_feed_batch += add;
    for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
         ++feedvar_index) {
      if (tm.feedvar_type[feedvar_index] == 1) {
        // 普通的非lod feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      } else if (tm.feedvar_type[feedvar_index] == 2) {
        // lod类型的feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
        // 在Lod最前面加0
        if (_batch_in_lod[feedvar_index].size() <= 0) {
          _batch_in_lod[feedvar_index].push_back({0});
        } else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
          _batch_in_lod[feedvar_index][0].push_back(0);
        }
        // 将lod加上前一组lod的结尾最大值,组合Lod
        size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
        for (size_t lod_index = 0;
             lod_index < tm.feed_lod_vector[feedvar_index].size();
             ++lod_index) {
          _batch_in_lod[feedvar_index][0].push_back(
              last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
        }
      } else {
        // tm.feedvar_type[feedvar_index] == 3
        // nobatch类型的feedvar.
        // 此时不累加,且值应为1
        _total_shape0_batch_in[feedvar_index] =
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      }
    }
W
wangguibao 已提交
580 581 582 583 584
    task->rem -= add;
    _rem_size -= add;
    return _rem_size;
  }

585 586
  static bool check_valid(const typename TaskT::InVectorT& in,
                          const typename TaskT::OutVectorT& out,
W
wangguibao 已提交
587 588 589 590 591 592 593
                          bool align) {
    (void)in;
    (void)out;
    (void)align;
    return true;
  }

594 595 596 597 598 599 600 601
  // this should be modified totally.
  // maybe we don`t need to do this inside the BatchTasks.
  // we can do the copy work outside the BatchTasks.
  // cause maybe next time we don`t need to do the extra copy.
  // directly copy the every Task into the Predictor.

  // batch.merge_tasks() is thread-safe function
  // cause batch is a local variable and Task is just read, not written.
H
HexToString 已提交
602

W
wangguibao 已提交
603
  void merge_tasks() {
604 605 606 607 608 609 610
    if (_taskmeta_vector.size() <= 0) {
      return;
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskMetaT& tm = _taskmeta_vector[ti];

H
HexToString 已提交
611 612
      for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
           ++feedvar_index) {
613
        const paddle::PaddleTensor& feedVarTensor =
H
HexToString 已提交
614 615
            (*tm.task->inVectorT_ptr)[feedvar_index];
        size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
616 617

        if (ti == 0) {
H
HexToString 已提交
618
          // Create the entire tensor at once
619 620 621 622 623 624
          // for now, we assume that every task feedvar_bytesize is the same.
          // which means we dont support auto embedding.
          // but for different feedvar, it is different.
          paddle::PaddleTensor paddleTensor;
          paddleTensor.dtype = feedVarTensor.dtype;
          paddleTensor.name = feedVarTensor.name;
H
HexToString 已提交
625
          paddleTensor.lod = _batch_in_lod[feedvar_index];
626
          paddleTensor.shape = feedVarTensor.shape;
H
HexToString 已提交
627
          paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
628
          paddleTensor.data.Resize(feedvar_bytesize *
H
HexToString 已提交
629
                                   _total_shape0_batch_in[feedvar_index]);
630 631 632
          _batch_in.push_back(paddleTensor);
        }

H
HexToString 已提交
633 634
        void* dst_ptr = _batch_in[feedvar_index].data.data() +
                        _batch_in_offset[feedvar_index];
635
        void* source_ptr =
H
HexToString 已提交
636 637 638 639 640
            feedVarTensor.data.data() +
            feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
        size_t length =
            feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
                                tm.feed_shape0_range[feedvar_index][0]);
641
        memcpy(dst_ptr, source_ptr, length);
H
HexToString 已提交
642 643 644
        // nobatch类型的feedvar,不叠加.
        if (tm.feedvar_type[feedvar_index] != 3)
          _batch_in_offset[feedvar_index] += length;
W
wangguibao 已提交
645
      }
W
wangguibao 已提交
646
    }
W
wangguibao 已提交
647
  }
W
wangguibao 已提交
648

H
HexToString 已提交
649
  bool check_fetchvar_valid(size_t fetchvar_index) {
650 651 652 653 654 655 656 657 658 659 660 661 662
    if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
      LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
      return 0;
    }

    if (_batch_out[fetchvar_index].shape.size() <= 0) {
      LOG(ERROR) << "fetchvar[" << fetchvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
663
  size_t fetchvar_element_bytesize(size_t fetchvar_index) {
664 665 666
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
667
    size_t dtype = _batch_out[fetchvar_index].dtype;
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
685
  size_t fetchvar_element_num(size_t fetchvar_index) {
686 687 688
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
689
    size_t element_num = 1;
690 691 692 693 694
    if (_batch_out[fetchvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
695
    for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
696 697 698 699 700
      element_num *= _batch_out[fetchvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
701
  size_t fetchvar_bytesize(size_t fetchvar_index) {
702 703 704 705
    return fetchvar_element_num(fetchvar_index) *
           fetchvar_element_bytesize(fetchvar_index);
  }

H
HexToString 已提交
706 707 708
  size_t fetchvar_batch_size(size_t fetchvar_index) {
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
709
    }
H
HexToString 已提交
710 711 712 713 714 715 716 717 718 719
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if (_batch_out[fetchvar_index].lod.size() > 0 &&
        _batch_out[fetchvar_index].lod[0].size() > 0) {
      return _batch_out[fetchvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
    return _batch_out[fetchvar_index].shape[0];
720 721
  }

H
HexToString 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  size_t fetchvar_batch_size() { return _total_fetch_batch; }

  bool deal_batch_out() {
    _total_fetch_batch = fetchvar_batch_size(0);
    if (_total_fetch_batch <= 0) return false;
    for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
         ++fetchvar_index) {
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
      // fetchvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
        // which means error.
        if (fetchvar_batch_size(fetchvar_index) != 1 &&
            _total_fetch_batch != 1) {
          return false;
        } else {
          // which means fetchvar shape[0] = 1.
          // shape[0] does not change with batch
          set_fetch_nobatch_index.insert(fetchvar_index);
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
        }
      }
      // 将lod fetchvar index加入到vector中。
      if (_batch_out[fetchvar_index].lod.size() > 0 &&
          _batch_out[fetchvar_index].lod[0].size() > 0) {
        vector_fetch_lod_index.push_back(fetchvar_index);
      }
753
    }
H
HexToString 已提交
754
    return true;
755 756
  }

W
wangguibao 已提交
757
  void notify_tasks() {
758 759 760 761
    if (_taskmeta_vector.size() <= 0) {
      LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
      return;
    }
H
HexToString 已提交
762 763 764 765 766
    // 根据_batch_out,求出输出的整体batch
    // 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
    deal_batch_out();
    // 若输出的batch不是1,且不与输入batch对应,则错误
    if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
767
      LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
W
wangguibao 已提交
768
      return;
W
wangguibao 已提交
769 770
    }

H
HexToString 已提交
771
    size_t fetchvar_num = _batch_out.size();
772 773 774 775 776 777 778 779
    if (_batch_out_offset.size() == 0) {
      _batch_out_offset.resize(fetchvar_num, 0);
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskT* task = _taskmeta_vector[ti].task;
      size_t begin = _taskmeta_vector[ti].begin;
      size_t end = _taskmeta_vector[ti].end;
W
wangguibao 已提交
780
      size_t add = end - begin;
H
HexToString 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
      size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
      // 对task中的outVectorT_ptr进行初始化
      // 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
      if (!task->task_fetch_init(*this)) {
        LOG(ERROR) << " task_fetch_init error.";
        return;
      }
      size_t fetch_lod_index = 0;

      for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
           ++fetchvar_index) {
        size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);

        if (set_fetch_nobatch_index.size() > 0 &&
            set_fetch_nobatch_index.find(fetchvar_index) !=
                set_fetch_nobatch_index.end()) {
          // nobatch fetchvar情况
          // 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr = fetchVarTensor.data.data();
          size_t length = fetchvar_bytesize_index * 1;
          void* source_ptr = _batch_out[fetchvar_index].data.data();
          memcpy(dst_ptr, source_ptr, length);
        } else if (vector_fetch_lod_index.size() > 0 &&
                   std::find(vector_fetch_lod_index.begin(),
                             vector_fetch_lod_index.end(),
                             fetchvar_index) != vector_fetch_lod_index.end()) {
          // lod fetchvar情况,此时无法确定总的shape[0]
          // 根据task中的task_num总数开辟task_num个临时空间
          // 每个lod型的fetchvar拷贝到对应的临时空间中
          // 最后再计算临时空间的总量,合并fetchvar和lod
          size_t last_batch = _batch_out_offset[fetchvar_index];
          size_t shape0_index_start =
              _batch_out[fetchvar_index].lod[0][last_batch];
          size_t shape0_index_end =
              _batch_out[fetchvar_index].lod[0][last_batch + add];
          size_t shape0_length = shape0_index_end - shape0_index_start;
          // task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
          // 此时,先拷入task->outLodTensorVector[taskmeta_index]
          // 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
          if (task->taskmeta_num > 1) {
            paddle::PaddleTensor& fetchVarTensor =
                task->outLodTensorVector[taskmeta_index][fetch_lod_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
826
            fetchVarTensor.shape[0] = shape0_length;
H
HexToString 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
            fetchVarTensor.data.Resize(length);
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);
            // 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({});
            }
            fetchVarTensor.lod[0].resize(add, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 0;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          } else {
            // task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
            // 此时resize后,直接写入task->outVectorT_ptr中即可。
            paddle::PaddleTensor& fetchVarTensor =
                (*task->outVectorT_ptr)[fetchvar_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
H
HexToString 已提交
852
            fetchVarTensor.shape[0] = shape0_length;
H
HexToString 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
            fetchVarTensor.data.Resize(length);
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);

            // task中的lod补0
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({0});
            } else if (fetchVarTensor.lod[0].size() <= 0) {
              fetchVarTensor.lod[0].push_back(0);
            }
            // 将合并的lod信息对应的batch,拆分到task中。
            // 注意,此时需要去掉前面lod导致的前置积累。
            // 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
            // 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
            // [0,2,5]
            // 第二组,都需要减5,得到[2,5],这样处理才对。
            fetchVarTensor.lod[0].resize(add + 1, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 1;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          }
          fetch_lod_index++;
        } else {
          // 普通fetchvar情况,此时该Task总的fetchvar_batch =
          // 输入的总的batch_size()
          // 输出的batch应与输入的batch对应相等。
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr =
              fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
          size_t length = fetchvar_bytesize_index * add;
          void* source_ptr =
              _batch_out[fetchvar_index].data.data() +
              _batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;

          memcpy(dst_ptr, source_ptr, length);
W
wangguibao 已提交
897
        }
H
HexToString 已提交
898
        _batch_out_offset[fetchvar_index] += add;
W
wangguibao 已提交
899
      }
W
wangguibao 已提交
900

H
HexToString 已提交
901 902 903
      // index是局部变量,fetch_add是原子操作,成功则返回原值。
      // 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
      // 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
W
wangguibao 已提交
904
      size_t index = task->index.fetch_add(add);
905
      if ((index + add) >= task->batch_size()) {
H
HexToString 已提交
906
        task->combine_taskmeta();
W
wangguibao 已提交
907 908
        char c = 0;
        while (write(task->write_fd, &c, 1) != 1 && errno == EINTR) {
W
wangguibao 已提交
909
        }
W
wangguibao 已提交
910 911
        butil::return_object(task);
      }
W
wangguibao 已提交
912
    }
W
wangguibao 已提交
913
  }
W
wangguibao 已提交
914

915
  const typename TaskT::InVectorT& in() const { return _batch_in; }
W
wangguibao 已提交
916

917
  typename TaskT::OutVectorT& out() { return _batch_out; }
W
wangguibao 已提交
918

919
  size_t task_size() { return _taskmeta_vector.size(); }
W
wangguibao 已提交
920

H
HexToString 已提交
921 922
  const size_t get_rem_size() { return _rem_size; }

H
HexToString 已提交
923
  bool get_overrun() { return _overrun; }
H
HexToString 已提交
924 925 926

  bool get_allow_split_request() { return _allow_split_request; }

W
wangguibao 已提交
927
 private:
928 929
  std::vector<TaskMetaT> _taskmeta_vector;
  typename TaskT::InVectorT _batch_in;
H
HexToString 已提交
930
  std::vector<size_t> _batch_in_offset;
H
HexToString 已提交
931 932 933 934
  std::vector<size_t> _total_shape0_batch_in;
  size_t _total_feed_batch;
  std::vector<PaddleTensorLod> _batch_in_lod;

935
  typename TaskT::OutVectorT _batch_out;
H
HexToString 已提交
936
  std::vector<size_t> _batch_out_offset;
H
HexToString 已提交
937 938 939 940 941 942
  // std::vector<size_t> _total_shape0_batch_out;
  size_t _total_fetch_batch;
  // std::vector<PaddleTensorLod>  _batch_out_lod;
  std::set<size_t> set_fetch_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;

W
wangguibao 已提交
943 944
  size_t _rem_size;
  size_t _batch_size;
H
HexToString 已提交
945
  bool _overrun;
H
HexToString 已提交
946
  bool _allow_split_request;
W
wangguibao 已提交
947 948
};

W
wangguibao 已提交
949
// BSF task handle
H
HexToString 已提交
950 951 952 953 954 955 956
// TaskHandler is the handle of Task.
// `read_fd` is used for receive signal in brpc Thread.
// 'write_fd' is used for write signal in bsf Thread.
// when TaskMeta is done, bsf Thread will write to 'write_fd'.
// brpc Thread is keeping reading 'read_fd' in a while loop.
// brpc Thread will receive signal when TaskMeta is done.
// so `read_fd` and 'write_fd' is used for communicate in different Thread.
W
wangguibao 已提交
957
template <typename TaskT>
W
wangguibao 已提交
958
struct TaskHandler {
W
wangguibao 已提交
959 960
  int read_fd;
  int write_fd;
W
wangguibao 已提交
961

W
wangguibao 已提交
962 963 964
  TaskHandler() : read_fd(-1), write_fd(-1) {
    // do nothing
  }
W
wangguibao 已提交
965

W
wangguibao 已提交
966 967 968 969
  explicit TaskHandler(TaskT const& task)
      : read_fd(task.read_fd), write_fd(task.write_fd) {
    // do nothing
  }
W
wangguibao 已提交
970

W
wangguibao 已提交
971
  inline bool valid() const { return read_fd >= 0 && write_fd >= 0; }
W
wangguibao 已提交
972

W
wangguibao 已提交
973 974 975 976
  static TaskHandler<TaskT>& valid_handle() {
    static TaskHandler<TaskT> vhandle;
    return vhandle;
  }
W
wangguibao 已提交
977 978
};

H
HexToString 已提交
979
// TaskExecutor is a Thread pool.
W
wangguibao 已提交
980
template <typename TaskT>
W
wangguibao 已提交
981 982
class TaskExecutor;

H
HexToString 已提交
983
// ThreadContext is used for start a bsf Thread.
W
wangguibao 已提交
984
template <typename TaskT>
W
wangguibao 已提交
985
struct ThreadContext {
W
wangguibao 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
  TaskExecutor<TaskT>* executor;
  void* user_thread_context;
  THREAD_T tid;
  int init_status;

  ThreadContext()
      : executor(NULL), user_thread_context(NULL), tid(-1), init_status(0) {
    // do nothing
  }

  ~ThreadContext() {
    tid = -1;
    executor = NULL;
    user_thread_context = NULL;
    init_status = 0;
  }
W
wangguibao 已提交
1002 1003
};

H
HexToString 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
// TaskExecutor is a Thread pool.
// Each Model corresponding to a Model.
// TaskT is actually a Request preprocessed by ReaderOp.
// TaskT will be divided as TaskMeta which will be
// put into _task_queue in brpc-Thread by schedule().
// TaskHander will be returned to brpc-Thread.
// start() function will create `thread_num` bsf Threads.
// every bsf Thread check the _task_queue and take TaskMeta from it.
// when a Task`s all TaskMeta is done, TaskHander will be noticed.
W
wangguibao 已提交
1013
template <typename TaskT>
W
wangguibao 已提交
1014
class TaskExecutor {
W
wangguibao 已提交
1015 1016 1017
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
1018 1019
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1020
  typedef std::vector<TaskT> TaskArrayT;
1021
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
H
HexToString 已提交
1022 1023
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
1024

W
wangguibao 已提交
1025 1026 1027 1028 1029 1030
  TaskExecutor()
      : _stop(false),
        _thread_init_fn(NULL),
        _thread_reset_fn(NULL),
        _user_thread_contexts(NULL),
        _batch_size(DEFAULT_BATCH_SIZE),
H
HexToString 已提交
1031
        _overrun(false),
W
wangguibao 已提交
1032 1033 1034 1035 1036
        _fn(NULL) {
    THREAD_MUTEX_INIT(&_mut, NULL);
    THREAD_COND_INIT(&_cond, NULL);
    _task_queue.clear();
  }
W
wangguibao 已提交
1037

W
wangguibao 已提交
1038 1039 1040 1041
  ~TaskExecutor() {
    THREAD_MUTEX_DESTROY(&_mut);
    THREAD_COND_DESTROY(&_cond);
  }
W
wangguibao 已提交
1042

H
HexToString 已提交
1043 1044 1045 1046 1047
  // cause vector.resize will use copy or move construct.
  TaskExecutor(TaskExecutor<TaskT>&& other) noexcept {
    if (this != &other) {
      TaskExecutor();
    }
W
wangguibao 已提交
1048
  }
W
wangguibao 已提交
1049

W
wangguibao 已提交
1050
  void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
W
wangguibao 已提交
1051

H
HexToString 已提交
1052
  void set_overrun(bool overrun) { _overrun = overrun; }
H
HexToString 已提交
1053 1054 1055 1056

  void set_allow_split_request(bool allow_split_request) {
    _allow_split_request = allow_split_request;
  }
W
wangguibao 已提交
1057

W
wangguibao 已提交
1058 1059 1060 1061 1062
  void set_thread_init_fn(boost::function<int(void*)> init_fn,
                          void** contexts = NULL) {
    _thread_init_fn = init_fn;
    _user_thread_contexts = contexts;
  }
W
wangguibao 已提交
1063

W
wangguibao 已提交
1064 1065 1066 1067
  void set_thread_reset_fn(boost::function<int(void*)> reset_fn) {
    _thread_reset_fn = reset_fn;
  }

1068
  void set_thread_callback_fn(boost::function<void(const void*, void*)> cb) {
W
wangguibao 已提交
1069 1070
    _fn = cb;
  }
W
wangguibao 已提交
1071

W
wangguibao 已提交
1072 1073
  int start(uint32_t thread_num, uint32_t init_timeout_sec = 0);
  void stop();
W
wangguibao 已提交
1074

W
wangguibao 已提交
1075
  static void* thread_entry(void* args);
W
wangguibao 已提交
1076

W
wangguibao 已提交
1077
  int work(ThreadContext<TaskT>* context);
W
wangguibao 已提交
1078

1079
  TaskHandler<TaskT> schedule(const void*, void*);
W
wangguibao 已提交
1080

H
HexToString 已提交
1081
  bool move_task_to_batch(BatchTasks<TaskT>& batchTask);  // NOLINT
W
wangguibao 已提交
1082

H
HexToString 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
 private:
  TaskExecutor(TaskExecutor<TaskT> const& other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> const& other) = delete;
  /*
  TaskExecutor(TaskExecutor<TaskT> && other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> && other) = delete;
  */

W
wangguibao 已提交
1093
  bool _stop;
W
wangguibao 已提交
1094

W
wangguibao 已提交
1095 1096 1097
  // can't use boost::mutex, because some stupid macro
  THREAD_MUTEX_T _mut;
  THREAD_COND_T _cond;
W
wangguibao 已提交
1098

H
HexToString 已提交
1099
  std::list<TaskT*> _task_queue;
W
wangguibao 已提交
1100

W
wangguibao 已提交
1101 1102 1103
  boost::function<int(void*)> _thread_init_fn;
  boost::function<int(void*)> _thread_reset_fn;
  void** _user_thread_contexts;
W
wangguibao 已提交
1104

W
wangguibao 已提交
1105
  std::vector<ThreadContext<TaskT>*> _thread_contexts;
W
wangguibao 已提交
1106

W
wangguibao 已提交
1107
  size_t _batch_size;
H
HexToString 已提交
1108
  bool _overrun;
H
HexToString 已提交
1109
  bool _allow_split_request;
W
wangguibao 已提交
1110

1111
  boost::function<void(const void*, void*)> _fn;
W
wangguibao 已提交
1112 1113
};

H
HexToString 已提交
1114 1115 1116
// TaskExecutorVector is a SingleTon class.
// Each Model corresponding to a TaskExecutor.
// So we need several TaskExecutor when there are more than 1 Model.
H
HexToString 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
template <typename TaskT>
class TaskExecutorVector {
 public:
  static TaskExecutorVector<TaskT>& instance() {
    static TaskExecutorVector<TaskT> singleton;
    return singleton;
  }

  void resize(int size) { _vector_executor.resize(size); }

H
HexToString 已提交
1127 1128 1129 1130
  TaskExecutor<TaskT>& operator[](int task_index) {
    if (_vector_executor.size() <= task_index || task_index <= -1) {
      LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
      throw "_vector_executor.size() <= task_index or <= -1";
H
HexToString 已提交
1131
    }
H
HexToString 已提交
1132
    return _vector_executor[task_index];
H
HexToString 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
  }

 private:
  TaskExecutorVector() = default;
  TaskExecutorVector(const TaskExecutorVector<TaskT>& other) = delete;
  TaskExecutorVector& operator=(const TaskExecutorVector<TaskT>& other) =
      delete;
  TaskExecutorVector(TaskExecutorVector<TaskT>&& other) = delete;
  TaskExecutorVector& operator=(TaskExecutorVector<TaskT>&& other) = delete;
  std::vector<TaskExecutor<TaskT>> _vector_executor;
};

H
HexToString 已提交
1145 1146 1147 1148 1149
// TaskManager is actually a wrapper of Request in bsf.
// TaskManager`s schedule() change Request to be TaskT.
// and divided TaskT into several TaskMeta to put into the TaskExecutor`s
// task_queue.
// wait() is a while loop to receive signal when a whole Task is done.
W
wangguibao 已提交
1150
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
1151
class TaskManager {
W
wangguibao 已提交
1152 1153
 public:
  typedef Task<InItemT, OutItemT> TaskT;
1154 1155
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1156

H
HexToString 已提交
1157 1158
  explicit TaskManager(uint32_t model_index)  // NOLINT
      : _model_index(model_index) {}
W
wangguibao 已提交
1159

W
wangguibao 已提交
1160
  ~TaskManager() { wait(); }
W
wangguibao 已提交
1161

1162
  bool schedule(const void* in, void* out);  // NOLINT
W
wangguibao 已提交
1163
  void wait();
W
wangguibao 已提交
1164

W
wangguibao 已提交
1165
  inline void clear() { wait(); }
W
wangguibao 已提交
1166

W
wangguibao 已提交
1167 1168
 private:
  TaskHandler<TaskT> _task_owned;
H
HexToString 已提交
1169
  uint32_t _model_index;
W
wangguibao 已提交
1170
};  // class TaskManager
W
wangguibao 已提交
1171 1172

class AutoMutex {
W
wangguibao 已提交
1173 1174 1175 1176
 public:
  explicit AutoMutex(THREAD_MUTEX_T& mut) : _mut(mut) {
    THREAD_MUTEX_LOCK(&_mut);
  }
W
wangguibao 已提交
1177

W
wangguibao 已提交
1178
  ~AutoMutex() { THREAD_MUTEX_UNLOCK(&_mut); }
W
wangguibao 已提交
1179

W
wangguibao 已提交
1180 1181
 private:
  THREAD_MUTEX_T& _mut;
W
wangguibao 已提交
1182 1183
};

W
wangguibao 已提交
1184 1185
}  // namespace bsf
}  // namespace im
W
wangguibao 已提交
1186

1187
// #include "core/predictor/framework/bsf-inl-tensor.h"
G
guru4elephant 已提交
1188
#include "core/predictor/framework/bsf-inl.h"