bsf.h 41.8 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
W
wangguibao 已提交
16 17

#include <errno.h>
W
wangguibao 已提交
18
#include <algorithm>
H
HexToString 已提交
19
#include <cstring>
H
HexToString 已提交
20
#include <list>
H
HexToString 已提交
21
#include <set>
W
wangguibao 已提交
22
#include <vector>
W
wangguibao 已提交
23 24 25 26

#ifdef BCLOUD
#include "base/atomicops.h"
#else
W
wangguibao 已提交
27
#include "butil/atomicops.h"
W
wangguibao 已提交
28 29
#endif

G
guru4elephant 已提交
30
#include "core/predictor/common/inner_common.h"
W
wangguibao 已提交
31

W
wangguibao 已提交
32
#include "boost/function.hpp"
W
wangguibao 已提交
33

34 35 36
#include "core/predictor/framework/memory.h"
#include "paddle_inference_api.h"

W
wangguibao 已提交
37 38 39 40 41
namespace im {
namespace bsf {

static const size_t DEFAULT_BATCH_SIZE = 100;

42 43 44 45 46 47 48 49 50
// InItemT is paddle::PaddleTensor
// InVectorT std::vector<paddle::PaddleTensor>
// InVectorT means different feedvar, but not batch.
// Batch is already inside the  paddle::PaddleTensor.

// size_t `rem` records how many batch have not been put in BatchTasks.
// `rem` don`t need to be atomic, cause the operation `put` is synchronous.
// actually, the reason is that lock have been added outside the operation
// `put`.
H
HexToString 已提交
51 52
template <typename TaskT>
class BatchTasks;
53 54
// size_t `index` records how many batch have been processing completed.
// `index` need to be atomic, cause the operation 'notify' is asynchronous.
W
wangguibao 已提交
55
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
56
struct Task {
57 58
  typedef std::vector<InItemT> InVectorT;
  typedef std::vector<OutItemT> OutVectorT;
W
wangguibao 已提交
59 60 61
  typedef InItemT InType;
  typedef OutItemT OutType;
  typedef Task<InItemT, OutItemT> TaskT;
H
HexToString 已提交
62
  typedef std::vector<size_t> ShapeVector;
63
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
64

W
wangguibao 已提交
65 66 67
  int read_fd;
  int write_fd;
  pid_t owner_tid;
68 69
  const InVectorT* inVectorT_ptr;
  OutVectorT* outVectorT_ptr;
W
wangguibao 已提交
70
  size_t rem;
H
HexToString 已提交
71 72 73 74 75
  size_t total_feed_batch;
  std::set<size_t> set_feed_lod_index;
  std::set<size_t> set_feed_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;
  std::set<size_t> set_fetch_nobatch_index;
W
wangguibao 已提交
76
  butil::atomic<size_t> index;
H
HexToString 已提交
77 78 79 80 81
  size_t taskmeta_num;
  THREAD_MUTEX_T task_mut;
  bool fetch_init;
  // taskmeta_num * set_feed_lod_index.size()
  std::vector<OutVectorT> outLodTensorVector;
W
wangguibao 已提交
82 83 84 85 86

  Task() {
    read_fd = -1;
    write_fd = -1;
    owner_tid = -1;
87 88
    inVectorT_ptr = NULL;
    outVectorT_ptr = NULL;
H
HexToString 已提交
89 90 91 92
    set_feed_lod_index.clear();
    set_feed_nobatch_index.clear();
    vector_fetch_lod_index.clear();
    set_fetch_nobatch_index.clear();
W
wangguibao 已提交
93
    rem = -1;
H
HexToString 已提交
94 95
    total_feed_batch = 0;
    taskmeta_num = 0;
W
wangguibao 已提交
96
    index.store(0, butil::memory_order_relaxed);
H
HexToString 已提交
97 98 99 100 101 102 103
    THREAD_MUTEX_INIT(&task_mut, NULL);
    fetch_init = false;
    outLodTensorVector.clear();
  }
  ~Task() {
    THREAD_MUTEX_DESTROY(&task_mut);
    outLodTensorVector.clear();
W
wangguibao 已提交
104
  }
105

H
HexToString 已提交
106
  bool check_feedvar_valid(size_t feedvar_index) {
107 108 109 110 111 112 113 114 115 116 117 118 119
    if (feedvar_index < 0 || inVectorT_ptr->size() <= feedvar_index) {
      LOG(ERROR) << "feedvar doesnt exsit or feedvar_index error";
      return 0;
    }

    if ((*inVectorT_ptr)[feedvar_index].shape.size() <= 0) {
      LOG(ERROR) << "feedvar[" << feedvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
120 121 122 123 124 125 126 127
  bool combine_task_valid(Task* other_task) {
    // TODO(HexToString): auto-padding
    // 除最外层的shape外,内层shape应一致才能合并。
    // 否则跳出循环,放入下一个batchTask中。
    // 以此保证batch.append_task(task)中的task的内层shape相同。
    if (other_task->feedvar_shape_nobatch() != feedvar_shape_nobatch()) {
      return false;
    }
128

H
HexToString 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    // 对于Shape[0] = 1 而!=batch的情况,因为合并时,取其中一个的值
    // 所以要求该feedvar必须相等,才能合并。
    // 目前没有PaddleTensor和PaddleBuff没有重载==,所以只能比较内存.
    for (size_t feedvar_index = 0;
         feedvar_index < set_feed_nobatch_index.size();
         ++feedvar_index) {
      int result =
          std::memcmp((*inVectorT_ptr)[feedvar_index].data.data(),
                      (*(other_task->inVectorT_ptr))[feedvar_index].data.data(),
                      (*inVectorT_ptr)[feedvar_index].data.length());
      if (result != 0) return false;
    }
    return true;
  }

  size_t feedvar_batch_size(size_t feedvar_index) {
145 146 147
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
148 149 150 151 152 153 154 155 156
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
        (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
      return (*inVectorT_ptr)[feedvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
157 158 159
    return (*inVectorT_ptr)[feedvar_index].shape[0];
  }

H
HexToString 已提交
160
  size_t feedvar_element_bytesize(size_t feedvar_index) {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
    int dtype = (*inVectorT_ptr)[feedvar_index].dtype;
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
182
  size_t feedvar_element_num(size_t feedvar_index) {
183 184 185
    if (!check_feedvar_valid(feedvar_index)) {
      return 0;
    }
H
HexToString 已提交
186
    size_t element_num = 1;
187 188
    if ((*inVectorT_ptr)[feedvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
H
HexToString 已提交
189 190
      // [10,1] = [10], so if shape[1] doesn`t exist.
      // should return 1.
191 192 193
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
194
    for (size_t i = 1; i < (*inVectorT_ptr)[feedvar_index].shape.size(); ++i) {
195 196 197 198 199
      element_num *= (*inVectorT_ptr)[feedvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
200
  size_t feedvar_bytesize(size_t feedvar_index) {
201 202 203 204
    return feedvar_element_num(feedvar_index) *
           feedvar_element_bytesize(feedvar_index);
  }

H
HexToString 已提交
205
  ShapeVector feedvar_shape_nobatch(size_t feedvar_index) {
206 207 208 209 210 211 212 213
    if (!check_feedvar_valid(feedvar_index)) {
      return ShapeVector();
    }
    return ShapeVector{(*inVectorT_ptr)[feedvar_index].shape.begin() + 1,
                       (*inVectorT_ptr)[feedvar_index].shape.end()};
  }

  VectorOfShapeVector feedvar_shape_nobatch() {
H
HexToString 已提交
214 215 216 217 218
    VectorOfShapeVector vector_of_feedvar_shape_nobatch;
    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
         ++feedvar_index) {
      vector_of_feedvar_shape_nobatch.push_back(
          feedvar_shape_nobatch(feedvar_index));
219 220 221 222
    }
    return vector_of_feedvar_shape_nobatch;
  }

H
HexToString 已提交
223 224 225 226 227 228 229 230 231 232
  // For each feedvar, batch should be 1 or batch_size.
  // if feedvar-1: batch_size = 1 (always not batch).
  // feedvar-2: batch_size = n,  batch = n.
  // this function is not thread safe. only called when task is creating.
  bool task_init() {
    total_feed_batch = feedvar_batch_size(0);
    // which means error.
    if (total_feed_batch <= 0) return false;

    for (size_t feedvar_index = 0; feedvar_index < inVectorT_ptr->size();
233
         ++feedvar_index) {
H
HexToString 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中feedvar-1: 带batch,且batch =1,shape[0] = 1
      // feedvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_feed_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (feedvar_batch_size(feedvar_index) != total_feed_batch) {
        // which means error.
        if (feedvar_batch_size(feedvar_index) != 1 && total_feed_batch != 1) {
          return false;
        } else {
          // which means feedvar shape[0] = 1.
          // shape[0] does not change with batch
          set_feed_nobatch_index.insert(feedvar_index);
          total_feed_batch =
              std::max(feedvar_batch_size(feedvar_index), total_feed_batch);
        }
      }
      // 将lod feedvar index加入到vector中。
      if ((*inVectorT_ptr)[feedvar_index].lod.size() > 0 &&
          (*inVectorT_ptr)[feedvar_index].lod[0].size() > 0) {
        set_feed_lod_index.insert(feedvar_index);
256 257
      }
    }
H
HexToString 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    return true;
  }

  size_t batch_size() { return total_feed_batch; }

  // start_batch range is 0~batch_size, end_batch range is 1~batch_size
  // start_batch should not be included, end_batch > start_batch
  // return is (start_batch, end_batch] = [start_batch+1,end_batch]
  // for not lod, shape0_index = [(start_batch+1)-1,end_batch-1] =
  // [start_batch,end_batch-1] = [start_batch,end_batch)
  // for lod, shape0_index = [lod[start_batch],lod[end_batch]-1] =
  // [lod[start_batch],lod[end_batch])
  // for nobatch, shape0_index = [0,1)
  // 对于调用者,拿到shape0_index后,for(size_t myindex =shape0_index[0];
  // myindex <shape0_index[1];myindex++)即可.

  // 原始lod= [0,3,4,6] 取的batch为(start_batch = 1,end_batch =
  // 3],即取batch=2,3.
  // 此时lod=[3,4,6],处理后得到[1,3]
  // 这样处理后,合并lod比较方便,直接加上上一个lod的结尾的值即可。
  std::vector<std::vector<size_t>> get_feature_by_batch(size_t feedvar_index,
                                                        size_t start_batch,
                                                        size_t end_batch) {
    std::vector<std::vector<size_t>> feature_vector;
    // feature_vector是双层vector,这么设计是由于一个遍历即可处理所有的特征。
    // feature_vector[0]是由shape0_index的范围值组成的vector,包含两个元素最小和最大值。
    // feature_vector[1]是由lod组成的vector,包含指定batch的lod信息.
    // feature_vector[2]是由单个元素的组成的vector,元素值为1表示是nobatch的feedvar。

    // if 为 nobatch feedvar情况。
    // else if 为带lod的feedvar情况。
    // else为不带lod 普通feedvar情况。
    if (set_feed_nobatch_index.size() > 0 &&
        set_feed_nobatch_index.find(feedvar_index) !=
            set_feed_nobatch_index.end()) {
      feature_vector = {{0, 1}, {}, {1}};
    } else if (set_feed_lod_index.size() > 0 &&
               set_feed_lod_index.find(feedvar_index) !=
                   set_feed_lod_index.end()) {
      std::vector<size_t> feed_lod_vector(end_batch - start_batch);
      for (size_t lod_index = start_batch + 1, vector_index = 0;
           lod_index < end_batch + 1;
           ++lod_index, ++vector_index) {
        feed_lod_vector[vector_index] =
            (*inVectorT_ptr)[feedvar_index].lod[0][lod_index] -
            (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
304
      }
H
HexToString 已提交
305 306 307 308 309 310
      size_t shape0_start = (*inVectorT_ptr)[feedvar_index].lod[0][start_batch];
      size_t shape0_end = (*inVectorT_ptr)[feedvar_index].lod[0][end_batch];
      feature_vector = {{shape0_start, shape0_end}, feed_lod_vector};
      // feature_vector.push_back(feed_lod_vector);
    } else {
      feature_vector = {{start_batch, end_batch}};
311
    }
H
HexToString 已提交
312
    return feature_vector;
313 314
  }

H
HexToString 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  bool combine_taskmeta() {
    // 只有含有lod类型的fetch输出,且task被拆分为多个taskmeta的情况
    // 才需要将数据从outLodTensorVector搬运到outVectorT_ptr
    if (vector_fetch_lod_index.size() > 0 && taskmeta_num > 1) {
      for (size_t index = 0; index < vector_fetch_lod_index.size(); ++index) {
        size_t data_length = 0;
        size_t lod_length = 0;
        size_t feedvar_index = vector_fetch_lod_index[index];
        // 由于PaddleTensor的resize实现,是每次都会清空,所以必须先统计总长度。
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
             ++taskmeta_num) {
          data_length +=
              outLodTensorVector[taskmeta_index][index].data.length();
          lod_length += outLodTensorVector[taskmeta_index][index].lod[0].size();
        }
        // 一次性扩容PaddleTensor中的data和lod
        paddle::PaddleTensor& fetchVarTensor = (*outVectorT_ptr)[feedvar_index];
        fetchVarTensor.data.Resize(data_length);
        // task中的lod补0
        if (fetchVarTensor.lod.size() <= 0) {
          fetchVarTensor.lod.push_back({0});
        } else if (fetchVarTensor.lod[0].size() <= 0) {
          fetchVarTensor.lod[0].push_back(0);
        }
        fetchVarTensor.lod[0].resize(lod_length + 1, 0);

        //
        size_t data_length_offset = 0;
        size_t lod_length_offset = 0;
        size_t once_data_length = 0;
        size_t once_lod_length = 0;
        size_t last_lod_value = fetchVarTensor.lod[0][lod_length_offset];
        for (size_t taskmeta_index = 0; taskmeta_index < taskmeta_num;
             ++taskmeta_num) {
          void* dst_ptr = fetchVarTensor.data.data() + data_length_offset;
          void* source_ptr =
              outLodTensorVector[taskmeta_index][index].data.data();
          once_data_length =
              outLodTensorVector[taskmeta_index][index].data.length();
          memcpy(dst_ptr, source_ptr, once_data_length);
          once_lod_length =
              outLodTensorVector[taskmeta_index][index].lod[0].size();
          for (size_t once_index = 0; once_index < once_lod_length;
               ++once_index) {
            fetchVarTensor.lod[0][lod_length_offset + 1] =
                last_lod_value +
                outLodTensorVector[taskmeta_index][index].lod[0][once_index];
          }
          data_length_offset += once_data_length;
          lod_length_offset += once_lod_length;
        }
      }
367
    }
H
HexToString 已提交
368
    return true;
369
  }
H
HexToString 已提交
370 371 372

  bool task_fetch_init(BatchTasks<TaskT>& baskTask);
  bool task_fetch_create(BatchTasks<TaskT>& baskTask);
W
wangguibao 已提交
373 374
};

375 376 377 378 379 380 381 382 383 384 385 386
// `Several Task` or `part of batch in Task` can be a TaskMeta.
// Task is the original Request from User.
// For example, the batch of Task is 30. There are 4 Requests.
// The batch of BatchTasks is 100, which means we can deal 100 batch 1 time.
// TaskMeta-1:{task-1,0,30} TaskMeta-2:{task-2,0,30} TaskMeta-3:{task-3,0,30}
// but the last Task will be divided to 2 TaskMeta.
// TaskMeta-4:{task-4,0,10} TaskMeta-5:{task-4,10,30}.
// TaskMeta-1 ~ TaskMeta-4 will be inside BatchTasks-1.
// TaskMeta-5 will be inside BatchTasks-2.

// TaskMeta is necessary.
// cause we need know the the corresponding relationship between
H
HexToString 已提交
387
// `_batch_out`(which is in BatchTasks) and `outVectorT_ptr`(which is in Task).
388 389
// especially when 1 Task be divided into several TaskMeta and be put into
// several different BatchTasks.
H
HexToString 已提交
390 391 392 393 394

// begin、add、end means batch, not shape[0].
// if not lod, batch == shape[0]. if lod, batch != shape[0]
// for example, lod = [0,3,4,6], shape = [6,340,340]
// there is 3 batch actually, add = 3, but shape[0] = 6.
W
wangguibao 已提交
395
template <typename TaskT>
W
wangguibao 已提交
396
struct TaskMeta {
H
HexToString 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  TaskMeta(TaskT* ptr, size_t start, size_t add, size_t taskmeta_index)
      : task(ptr),
        begin(start),
        end(start + add),
        taskmeta_index(taskmeta_index) {
    feedvar_num = ptr->inVectorT_ptr->size();
    for (size_t feedvar_index = 0; feedvar_index < feedvar_num;
         ++feedvar_index) {
      std::vector<std::vector<size_t>> feature =
          ptr->get_feature_by_batch(feedvar_index, start, start + add);
      feed_shape0_range.push_back(feature[0]);
      feedvar_type.push_back(feature.size());
      if (feature.size() == 1) {
        feed_lod_vector.push_back({});
      } else if (feature.size() == 2) {
        feed_lod_vector.push_back(feature[1]);
      } else {
        feed_lod_vector.push_back({});
      }
    }
  }
W
wangguibao 已提交
418 419 420 421

  TaskT* task;
  size_t begin;
  size_t end;
H
HexToString 已提交
422 423 424 425 426
  size_t feedvar_num;
  size_t taskmeta_index;
  std::vector<std::vector<size_t>> feed_shape0_range;
  std::vector<std::vector<size_t>> feed_lod_vector;
  std::vector<size_t> feedvar_type;
W
wangguibao 已提交
427 428
};

429 430 431
// each TaskT is already include batch in itself
// BatchTasks need to combine several `small TaskMeta` into a new `big TaskT`.
// The only difference between the `big TaskT` and `small TaskT` is that
H
HexToString 已提交
432 433
// the TaskT.inVectorT_ptr->[feedvar_index].shape[0] is different
// `big TaskT`.inVectorT_ptr->[feedvar_index].shape[0] is actually batch_size .
W
wangguibao 已提交
434
template <typename TaskT>
W
wangguibao 已提交
435
class BatchTasks {
W
wangguibao 已提交
436 437 438 439
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
  typedef TaskMeta<TaskT> TaskMetaT;
H
HexToString 已提交
440 441 442 443 444
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
  typedef std::vector<size_t> LodVector;
  typedef std::vector<LodVector> PaddleTensorLod;
  friend TaskT;
W
wangguibao 已提交
445

H
HexToString 已提交
446
  explicit BatchTasks(size_t batch_size,
H
HexToString 已提交
447
                      bool overrun = false,
H
HexToString 已提交
448
                      bool allow_split_request = true)
W
wangguibao 已提交
449 450
      : _batch_size(batch_size),
        _rem_size(batch_size),
H
HexToString 已提交
451
        _overrun(overrun),
H
HexToString 已提交
452
        _allow_split_request(allow_split_request) {
W
wangguibao 已提交
453
    _batch_in.clear();
454
    _batch_in_offset.clear();
H
HexToString 已提交
455 456 457 458
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
459
    _batch_out.clear();
460
    _batch_out_offset.clear();
H
HexToString 已提交
461
    _total_fetch_batch = 0;
462
    _taskmeta_vector.clear();
H
HexToString 已提交
463 464
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
465 466 467 468
  }

  ~BatchTasks() {
    _batch_in.clear();
469
    _batch_in_offset.clear();
H
HexToString 已提交
470 471 472 473
    _total_shape0_batch_in.clear();
    _total_feed_batch = 0;
    _batch_in_lod.clear();

W
wangguibao 已提交
474
    _batch_out.clear();
475
    _batch_out_offset.clear();
H
HexToString 已提交
476
    _total_fetch_batch = 0;
477
    _taskmeta_vector.clear();
H
HexToString 已提交
478 479
    set_fetch_nobatch_index.clear();
    vector_fetch_lod_index.clear();
W
wangguibao 已提交
480 481 482
  }

  // synchronized operation
483
  // because Upper level callers of this function have already locked.
H
HexToString 已提交
484
  // 能进到此函数的task都是同类task,在该函数之前已保证了这点。
W
wangguibao 已提交
485 486
  size_t append_task(TaskT* task) {
    size_t add = std::min(task->rem, _rem_size);
H
HexToString 已提交
487
    // when _overrun == true, it means always take a whole task as TaskMeta
H
HexToString 已提交
488 489
    // we can temporary breakthrough the limit of BatchTask`s capacity
    // BatchTask`s capacity is _batch_size or _rem_size
H
HexToString 已提交
490
    if (_overrun) {
W
wangguibao 已提交
491
      add = task->rem;
W
wangguibao 已提交
492
    }
493
    int start_index = task->batch_size() - task->rem;
H
HexToString 已提交
494 495
    TaskMetaT tm(task, start_index, add, task->taskmeta_num);
    task->taskmeta_num += 1;
496
    _taskmeta_vector.push_back(tm);
H
HexToString 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    if (_batch_in_offset.size() == 0) {
      _batch_in_offset.resize(tm.feedvar_num, 0);
    }
    if (_total_shape0_batch_in.size() == 0) {
      _total_shape0_batch_in.resize(tm.feedvar_num, 0);
    }
    if (_batch_in_lod.size() == 0) {
      PaddleTensorLod null_lod;
      _batch_in_lod.resize(tm.feedvar_num, null_lod);
    }
    _total_feed_batch += add;
    for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
         ++feedvar_index) {
      if (tm.feedvar_type[feedvar_index] == 1) {
        // 普通的非lod feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      } else if (tm.feedvar_type[feedvar_index] == 2) {
        // lod类型的feedvar
        // 累计计算shape0的累加值,为后面初始化PaddleTensor做准备。
        _total_shape0_batch_in[feedvar_index] +=
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
        // 在Lod最前面加0
        if (_batch_in_lod[feedvar_index].size() <= 0) {
          _batch_in_lod[feedvar_index].push_back({0});
        } else if (_batch_in_lod[feedvar_index][0].size() <= 0) {
          _batch_in_lod[feedvar_index][0].push_back(0);
        }
        // 将lod加上前一组lod的结尾最大值,组合Lod
        size_t last_lod_value = _batch_in_lod[feedvar_index][0].back();
        for (size_t lod_index = 0;
             lod_index < tm.feed_lod_vector[feedvar_index].size();
             ++lod_index) {
          _batch_in_lod[feedvar_index][0].push_back(
              last_lod_value + tm.feed_lod_vector[feedvar_index][lod_index]);
        }
      } else {
        // tm.feedvar_type[feedvar_index] == 3
        // nobatch类型的feedvar.
        // 此时不累加,且值应为1
        _total_shape0_batch_in[feedvar_index] =
            tm.feed_shape0_range[feedvar_index][1] -
            tm.feed_shape0_range[feedvar_index][0];
      }
    }
W
wangguibao 已提交
545 546 547 548 549
    task->rem -= add;
    _rem_size -= add;
    return _rem_size;
  }

550 551
  static bool check_valid(const typename TaskT::InVectorT& in,
                          const typename TaskT::OutVectorT& out,
W
wangguibao 已提交
552 553 554 555 556 557 558
                          bool align) {
    (void)in;
    (void)out;
    (void)align;
    return true;
  }

559 560 561 562 563 564 565 566
  // this should be modified totally.
  // maybe we don`t need to do this inside the BatchTasks.
  // we can do the copy work outside the BatchTasks.
  // cause maybe next time we don`t need to do the extra copy.
  // directly copy the every Task into the Predictor.

  // batch.merge_tasks() is thread-safe function
  // cause batch is a local variable and Task is just read, not written.
H
HexToString 已提交
567

W
wangguibao 已提交
568
  void merge_tasks() {
569 570 571 572 573 574 575
    if (_taskmeta_vector.size() <= 0) {
      return;
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskMetaT& tm = _taskmeta_vector[ti];

H
HexToString 已提交
576 577
      for (size_t feedvar_index = 0; feedvar_index < tm.feedvar_num;
           ++feedvar_index) {
578
        const paddle::PaddleTensor& feedVarTensor =
H
HexToString 已提交
579 580
            (*tm.task->inVectorT_ptr)[feedvar_index];
        size_t feedvar_bytesize = tm.task->feedvar_bytesize(feedvar_index);
581 582

        if (ti == 0) {
H
HexToString 已提交
583
          // Create the entire tensor at once
584 585 586 587 588 589
          // for now, we assume that every task feedvar_bytesize is the same.
          // which means we dont support auto embedding.
          // but for different feedvar, it is different.
          paddle::PaddleTensor paddleTensor;
          paddleTensor.dtype = feedVarTensor.dtype;
          paddleTensor.name = feedVarTensor.name;
H
HexToString 已提交
590
          paddleTensor.lod = _batch_in_lod[feedvar_index];
591
          paddleTensor.shape = feedVarTensor.shape;
H
HexToString 已提交
592
          paddleTensor.shape[0] = _total_shape0_batch_in[feedvar_index];
593
          paddleTensor.data.Resize(feedvar_bytesize *
H
HexToString 已提交
594
                                   _total_shape0_batch_in[feedvar_index]);
595 596 597
          _batch_in.push_back(paddleTensor);
        }

H
HexToString 已提交
598 599
        void* dst_ptr = _batch_in[feedvar_index].data.data() +
                        _batch_in_offset[feedvar_index];
600
        void* source_ptr =
H
HexToString 已提交
601 602 603 604 605
            feedVarTensor.data.data() +
            feedvar_bytesize * tm.feed_shape0_range[feedvar_index][0];
        size_t length =
            feedvar_bytesize * (tm.feed_shape0_range[feedvar_index][1] -
                                tm.feed_shape0_range[feedvar_index][0]);
606
        memcpy(dst_ptr, source_ptr, length);
H
HexToString 已提交
607 608 609
        // nobatch类型的feedvar,不叠加.
        if (tm.feedvar_type[feedvar_index] != 3)
          _batch_in_offset[feedvar_index] += length;
W
wangguibao 已提交
610
      }
W
wangguibao 已提交
611
    }
W
wangguibao 已提交
612
  }
W
wangguibao 已提交
613

H
HexToString 已提交
614
  bool check_fetchvar_valid(size_t fetchvar_index) {
615 616 617 618 619 620 621 622 623 624 625 626 627
    if (fetchvar_index < 0 || _batch_out.size() <= fetchvar_index) {
      LOG(ERROR) << "fetchvar doesnt exsit or fetchvar_index error";
      return 0;
    }

    if (_batch_out[fetchvar_index].shape.size() <= 0) {
      LOG(ERROR) << "fetchvar[" << fetchvar_index << "].shape.size()<=0,error";
      return 0;
    }

    return 1;
  }

H
HexToString 已提交
628
  size_t fetchvar_element_bytesize(size_t fetchvar_index) {
629 630 631
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
632
    size_t dtype = _batch_out[fetchvar_index].dtype;
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    if (dtype == paddle::PaddleDType::INT64) {
      return sizeof(int64_t);
    }
    if (dtype == paddle::PaddleDType::FLOAT32) {
      return sizeof(float);
    }
    if (dtype == paddle::PaddleDType::INT32) {
      return sizeof(int32_t);
    }
    if (dtype == paddle::PaddleDType::UINT8) {
      return sizeof(char);
    }
    return 0;
  }

  // Now, the implementation of this function is based on assumption
  // that shape [0] = batch_size.
H
HexToString 已提交
650
  size_t fetchvar_element_num(size_t fetchvar_index) {
651 652 653
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
    }
H
HexToString 已提交
654
    size_t element_num = 1;
655 656 657 658 659
    if (_batch_out[fetchvar_index].shape.size() == 1) {
      // cause shape[0] is batch_size.
      return 1;
    }
    // start from shape[1], cause shape[0] = batch_size.
H
HexToString 已提交
660
    for (size_t i = 1; i < _batch_out[fetchvar_index].shape.size(); ++i) {
661 662 663 664 665
      element_num *= _batch_out[fetchvar_index].shape[i];
    }
    return element_num;
  }

H
HexToString 已提交
666
  size_t fetchvar_bytesize(size_t fetchvar_index) {
667 668 669 670
    return fetchvar_element_num(fetchvar_index) *
           fetchvar_element_bytesize(fetchvar_index);
  }

H
HexToString 已提交
671 672 673
  size_t fetchvar_batch_size(size_t fetchvar_index) {
    if (!check_fetchvar_valid(fetchvar_index)) {
      return 0;
674
    }
H
HexToString 已提交
675 676 677 678 679 680 681 682 683 684
    // if lod, 'lod[0].size()-1' is batch.
    // for PaddleTensor lod is vector<vector<size_t>>, so lod[0] is real lod.
    // for example, lod = [0,3,4,6], shape = [6,340,340], batch is 3 actually.
    // for lod, the batch < shape[0].
    if (_batch_out[fetchvar_index].lod.size() > 0 &&
        _batch_out[fetchvar_index].lod[0].size() > 0) {
      return _batch_out[fetchvar_index].lod[0].size() - 1;
    }
    // if not lod, the first dimension of data `PaddleTensor.shape[0]` is batch.
    return _batch_out[fetchvar_index].shape[0];
685 686
  }

H
HexToString 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  size_t fetchvar_batch_size() { return _total_fetch_batch; }

  bool deal_batch_out() {
    _total_fetch_batch = fetchvar_batch_size(0);
    if (_total_fetch_batch <= 0) return false;
    for (size_t fetchvar_index = 0; fetchvar_index < _batch_out.size();
         ++fetchvar_index) {
      // TODO(HexToString): Distinguish between nobatch and batch =
      // 1(By:HexToString)
      // 当数据中fetchvar-1: 带batch,且batch =1,shape[0] = 1
      // fetchvar-2:不带batch,由于不带batch导致shape[0] =1
      // 此时,无法分辨是否是天然nobatch,此时set_fetch_nobatch_index会漏掉
      // 后续希望在其他地方能够区分两者。
      if (fetchvar_batch_size(fetchvar_index) != _total_fetch_batch) {
        // which means error.
        if (fetchvar_batch_size(fetchvar_index) != 1 &&
            _total_fetch_batch != 1) {
          return false;
        } else {
          // which means fetchvar shape[0] = 1.
          // shape[0] does not change with batch
          set_fetch_nobatch_index.insert(fetchvar_index);
          _total_fetch_batch =
              std::max(fetchvar_batch_size(fetchvar_index), _total_fetch_batch);
        }
      }
      // 将lod fetchvar index加入到vector中。
      if (_batch_out[fetchvar_index].lod.size() > 0 &&
          _batch_out[fetchvar_index].lod[0].size() > 0) {
        vector_fetch_lod_index.push_back(fetchvar_index);
      }
718
    }
H
HexToString 已提交
719
    return true;
720 721
  }

W
wangguibao 已提交
722
  void notify_tasks() {
723 724 725 726
    if (_taskmeta_vector.size() <= 0) {
      LOG(ERROR) << "_taskmeta_vector.size() <=0, error.";
      return;
    }
H
HexToString 已提交
727 728 729 730 731
    // 根据_batch_out,求出输出的整体batch
    // 并将lod类型和nobatch类型的fetchvar的index记录到set中,方便后续查看。
    deal_batch_out();
    // 若输出的batch不是1,且不与输入batch对应,则错误
    if (_total_feed_batch != _total_fetch_batch && _total_fetch_batch != 1) {
732
      LOG(ERROR) << "_batch_out`s batch != _batch_in`s batch, error.";
W
wangguibao 已提交
733
      return;
W
wangguibao 已提交
734 735
    }

H
HexToString 已提交
736
    size_t fetchvar_num = _batch_out.size();
737 738 739 740 741 742 743 744
    if (_batch_out_offset.size() == 0) {
      _batch_out_offset.resize(fetchvar_num, 0);
    }

    for (size_t ti = 0; ti < _taskmeta_vector.size(); ++ti) {
      TaskT* task = _taskmeta_vector[ti].task;
      size_t begin = _taskmeta_vector[ti].begin;
      size_t end = _taskmeta_vector[ti].end;
W
wangguibao 已提交
745
      size_t add = end - begin;
H
HexToString 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
      size_t taskmeta_index = _taskmeta_vector[ti].taskmeta_index;
      // 对task中的outVectorT_ptr进行初始化
      // 如果是lod输出+多个taskmeta,此时对outLodTensorVector也需要初始化
      if (!task->task_fetch_init(*this)) {
        LOG(ERROR) << " task_fetch_init error.";
        return;
      }
      size_t fetch_lod_index = 0;

      for (size_t fetchvar_index = 0; fetchvar_index < fetchvar_num;
           ++fetchvar_index) {
        size_t fetchvar_bytesize_index = fetchvar_bytesize(fetchvar_index);

        if (set_fetch_nobatch_index.size() > 0 &&
            set_fetch_nobatch_index.find(fetchvar_index) !=
                set_fetch_nobatch_index.end()) {
          // nobatch fetchvar情况
          // 无论输入是多少batch,该index的fetchvar始终就shape[0] = 1
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr = fetchVarTensor.data.data();
          size_t length = fetchvar_bytesize_index * 1;
          void* source_ptr = _batch_out[fetchvar_index].data.data();
          memcpy(dst_ptr, source_ptr, length);
        } else if (vector_fetch_lod_index.size() > 0 &&
                   std::find(vector_fetch_lod_index.begin(),
                             vector_fetch_lod_index.end(),
                             fetchvar_index) != vector_fetch_lod_index.end()) {
          // lod fetchvar情况,此时无法确定总的shape[0]
          // 根据task中的task_num总数开辟task_num个临时空间
          // 每个lod型的fetchvar拷贝到对应的临时空间中
          // 最后再计算临时空间的总量,合并fetchvar和lod
          size_t last_batch = _batch_out_offset[fetchvar_index];
          size_t shape0_index_start =
              _batch_out[fetchvar_index].lod[0][last_batch];
          size_t shape0_index_end =
              _batch_out[fetchvar_index].lod[0][last_batch + add];
          size_t shape0_length = shape0_index_end - shape0_index_start;
          // task被拆分为多个taskmeta时,不能直接拷入task->outVectorT_ptr
          // 此时,先拷入task->outLodTensorVector[taskmeta_index]
          // 当task所有的taskmeta都完成时,再按照顺序进行拷贝回task->outVectorT_ptr。
          if (task->taskmeta_num > 1) {
            paddle::PaddleTensor& fetchVarTensor =
                task->outLodTensorVector[taskmeta_index][fetch_lod_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
            fetchVarTensor.data.Resize(length);
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);
            // 由于是拆分的各个lod,不要补0,在最后合并给Task中的outVectorT_ptr时再补。
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({});
            }
            fetchVarTensor.lod[0].resize(add, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 0;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          } else {
            // task未被拆分为多个taskmeta,故只有某个线程中的taskmeta会操作task不存在多线程竞争
            // 此时resize后,直接写入task->outVectorT_ptr中即可。
            paddle::PaddleTensor& fetchVarTensor =
                (*task->outVectorT_ptr)[fetchvar_index];
            size_t length = fetchvar_bytesize_index * shape0_length;
            fetchVarTensor.data.Resize(length);
            void* dst_ptr = fetchVarTensor.data.data();
            void* source_ptr = _batch_out[fetchvar_index].data.data() +
                               shape0_index_start * fetchvar_bytesize_index;
            memcpy(dst_ptr, source_ptr, length);

            // task中的lod补0
            if (fetchVarTensor.lod.size() <= 0) {
              fetchVarTensor.lod.push_back({0});
            } else if (fetchVarTensor.lod[0].size() <= 0) {
              fetchVarTensor.lod[0].push_back(0);
            }
            // 将合并的lod信息对应的batch,拆分到task中。
            // 注意,此时需要去掉前面lod导致的前置积累。
            // 例如: 合lod = [0,2,5;7,10],是由两组batch=2的task合并后预测的。
            // 此时拆分,第一组时,都减去0,得到[2,5]+(由于前面已经补了0了) =
            // [0,2,5]
            // 第二组,都需要减5,得到[2,5],这样处理才对。
            fetchVarTensor.lod[0].resize(add + 1, 0);
            size_t last_lod_value =
                _batch_out[fetchvar_index].lod[0][last_batch];
            for (size_t lod_index = last_batch + 1, my_index = 1;
                 lod_index < last_batch + add + 1;
                 ++lod_index, ++my_index) {
              fetchVarTensor.lod[0][my_index] =
                  (_batch_out[fetchvar_index].lod[0][lod_index] -
                   last_lod_value);
            }
          }
          fetch_lod_index++;
        } else {
          // 普通fetchvar情况,此时该Task总的fetchvar_batch =
          // 输入的总的batch_size()
          // 输出的batch应与输入的batch对应相等。
          paddle::PaddleTensor& fetchVarTensor =
              (*task->outVectorT_ptr)[fetchvar_index];
          void* dst_ptr =
              fetchVarTensor.data.data() + fetchvar_bytesize_index * begin;
          size_t length = fetchvar_bytesize_index * add;
          void* source_ptr =
              _batch_out[fetchvar_index].data.data() +
              _batch_out_offset[fetchvar_index] * fetchvar_bytesize_index;

          memcpy(dst_ptr, source_ptr, length);
W
wangguibao 已提交
860
        }
H
HexToString 已提交
861
        _batch_out_offset[fetchvar_index] += add;
W
wangguibao 已提交
862
      }
W
wangguibao 已提交
863

H
HexToString 已提交
864 865 866
      // index是局部变量,fetch_add是原子操作,成功则返回原值。
      // 只有最后一个taskmeta都完成后,该线程的index+add才能>task->batch_size()
      // 故只有一个线程能进入if{}内.不会造成多线程竞争的问题。
W
wangguibao 已提交
867
      size_t index = task->index.fetch_add(add);
868
      if ((index + add) >= task->batch_size()) {
H
HexToString 已提交
869
        task->combine_taskmeta();
W
wangguibao 已提交
870 871
        char c = 0;
        while (write(task->write_fd, &c, 1) != 1 && errno == EINTR) {
W
wangguibao 已提交
872
        }
W
wangguibao 已提交
873 874
        butil::return_object(task);
      }
W
wangguibao 已提交
875
    }
W
wangguibao 已提交
876
  }
W
wangguibao 已提交
877

878
  const typename TaskT::InVectorT& in() const { return _batch_in; }
W
wangguibao 已提交
879

880
  typename TaskT::OutVectorT& out() { return _batch_out; }
W
wangguibao 已提交
881

882
  size_t task_size() { return _taskmeta_vector.size(); }
W
wangguibao 已提交
883

H
HexToString 已提交
884 885
  const size_t get_rem_size() { return _rem_size; }

H
HexToString 已提交
886
  bool get_overrun() { return _overrun; }
H
HexToString 已提交
887 888 889

  bool get_allow_split_request() { return _allow_split_request; }

W
wangguibao 已提交
890
 private:
891 892
  std::vector<TaskMetaT> _taskmeta_vector;
  typename TaskT::InVectorT _batch_in;
H
HexToString 已提交
893
  std::vector<size_t> _batch_in_offset;
H
HexToString 已提交
894 895 896 897
  std::vector<size_t> _total_shape0_batch_in;
  size_t _total_feed_batch;
  std::vector<PaddleTensorLod> _batch_in_lod;

898
  typename TaskT::OutVectorT _batch_out;
H
HexToString 已提交
899
  std::vector<size_t> _batch_out_offset;
H
HexToString 已提交
900 901 902 903 904 905
  // std::vector<size_t> _total_shape0_batch_out;
  size_t _total_fetch_batch;
  // std::vector<PaddleTensorLod>  _batch_out_lod;
  std::set<size_t> set_fetch_nobatch_index;
  std::vector<size_t> vector_fetch_lod_index;

W
wangguibao 已提交
906 907
  size_t _rem_size;
  size_t _batch_size;
H
HexToString 已提交
908
  bool _overrun;
H
HexToString 已提交
909
  bool _allow_split_request;
W
wangguibao 已提交
910 911
};

W
wangguibao 已提交
912
// BSF task handle
H
HexToString 已提交
913 914 915 916 917 918 919
// TaskHandler is the handle of Task.
// `read_fd` is used for receive signal in brpc Thread.
// 'write_fd' is used for write signal in bsf Thread.
// when TaskMeta is done, bsf Thread will write to 'write_fd'.
// brpc Thread is keeping reading 'read_fd' in a while loop.
// brpc Thread will receive signal when TaskMeta is done.
// so `read_fd` and 'write_fd' is used for communicate in different Thread.
W
wangguibao 已提交
920
template <typename TaskT>
W
wangguibao 已提交
921
struct TaskHandler {
W
wangguibao 已提交
922 923
  int read_fd;
  int write_fd;
W
wangguibao 已提交
924

W
wangguibao 已提交
925 926 927
  TaskHandler() : read_fd(-1), write_fd(-1) {
    // do nothing
  }
W
wangguibao 已提交
928

W
wangguibao 已提交
929 930 931 932
  explicit TaskHandler(TaskT const& task)
      : read_fd(task.read_fd), write_fd(task.write_fd) {
    // do nothing
  }
W
wangguibao 已提交
933

W
wangguibao 已提交
934
  inline bool valid() const { return read_fd >= 0 && write_fd >= 0; }
W
wangguibao 已提交
935

W
wangguibao 已提交
936 937 938 939
  static TaskHandler<TaskT>& valid_handle() {
    static TaskHandler<TaskT> vhandle;
    return vhandle;
  }
W
wangguibao 已提交
940 941
};

H
HexToString 已提交
942
// TaskExecutor is a Thread pool.
W
wangguibao 已提交
943
template <typename TaskT>
W
wangguibao 已提交
944 945
class TaskExecutor;

H
HexToString 已提交
946
// ThreadContext is used for start a bsf Thread.
W
wangguibao 已提交
947
template <typename TaskT>
W
wangguibao 已提交
948
struct ThreadContext {
W
wangguibao 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
  TaskExecutor<TaskT>* executor;
  void* user_thread_context;
  THREAD_T tid;
  int init_status;

  ThreadContext()
      : executor(NULL), user_thread_context(NULL), tid(-1), init_status(0) {
    // do nothing
  }

  ~ThreadContext() {
    tid = -1;
    executor = NULL;
    user_thread_context = NULL;
    init_status = 0;
  }
W
wangguibao 已提交
965 966
};

H
HexToString 已提交
967 968 969 970 971 972 973 974 975
// TaskExecutor is a Thread pool.
// Each Model corresponding to a Model.
// TaskT is actually a Request preprocessed by ReaderOp.
// TaskT will be divided as TaskMeta which will be
// put into _task_queue in brpc-Thread by schedule().
// TaskHander will be returned to brpc-Thread.
// start() function will create `thread_num` bsf Threads.
// every bsf Thread check the _task_queue and take TaskMeta from it.
// when a Task`s all TaskMeta is done, TaskHander will be noticed.
W
wangguibao 已提交
976
template <typename TaskT>
W
wangguibao 已提交
977
class TaskExecutor {
W
wangguibao 已提交
978 979 980
 public:
  typedef typename TaskT::InType InType;
  typedef typename TaskT::OutType OutType;
981 982
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
983
  typedef std::vector<TaskT> TaskArrayT;
984
  typedef baidu::paddle_serving::predictor::MempoolWrapper MempoolWrapper;
H
HexToString 已提交
985 986
  typedef std::vector<size_t> ShapeVector;
  typedef std::vector<ShapeVector> VectorOfShapeVector;
W
wangguibao 已提交
987

W
wangguibao 已提交
988 989 990 991 992 993
  TaskExecutor()
      : _stop(false),
        _thread_init_fn(NULL),
        _thread_reset_fn(NULL),
        _user_thread_contexts(NULL),
        _batch_size(DEFAULT_BATCH_SIZE),
H
HexToString 已提交
994
        _overrun(false),
W
wangguibao 已提交
995 996 997 998 999
        _fn(NULL) {
    THREAD_MUTEX_INIT(&_mut, NULL);
    THREAD_COND_INIT(&_cond, NULL);
    _task_queue.clear();
  }
W
wangguibao 已提交
1000

W
wangguibao 已提交
1001 1002 1003 1004
  ~TaskExecutor() {
    THREAD_MUTEX_DESTROY(&_mut);
    THREAD_COND_DESTROY(&_cond);
  }
W
wangguibao 已提交
1005

H
HexToString 已提交
1006 1007 1008 1009 1010
  // cause vector.resize will use copy or move construct.
  TaskExecutor(TaskExecutor<TaskT>&& other) noexcept {
    if (this != &other) {
      TaskExecutor();
    }
W
wangguibao 已提交
1011
  }
W
wangguibao 已提交
1012

W
wangguibao 已提交
1013
  void set_batch_size(size_t batch_size) { _batch_size = batch_size; }
W
wangguibao 已提交
1014

H
HexToString 已提交
1015
  void set_overrun(bool overrun) { _overrun = overrun; }
H
HexToString 已提交
1016 1017 1018 1019

  void set_allow_split_request(bool allow_split_request) {
    _allow_split_request = allow_split_request;
  }
W
wangguibao 已提交
1020

W
wangguibao 已提交
1021 1022 1023 1024 1025
  void set_thread_init_fn(boost::function<int(void*)> init_fn,
                          void** contexts = NULL) {
    _thread_init_fn = init_fn;
    _user_thread_contexts = contexts;
  }
W
wangguibao 已提交
1026

W
wangguibao 已提交
1027 1028 1029 1030
  void set_thread_reset_fn(boost::function<int(void*)> reset_fn) {
    _thread_reset_fn = reset_fn;
  }

1031
  void set_thread_callback_fn(boost::function<void(const void*, void*)> cb) {
W
wangguibao 已提交
1032 1033
    _fn = cb;
  }
W
wangguibao 已提交
1034

W
wangguibao 已提交
1035 1036
  int start(uint32_t thread_num, uint32_t init_timeout_sec = 0);
  void stop();
W
wangguibao 已提交
1037

W
wangguibao 已提交
1038
  static void* thread_entry(void* args);
W
wangguibao 已提交
1039

W
wangguibao 已提交
1040
  int work(ThreadContext<TaskT>* context);
W
wangguibao 已提交
1041

1042
  TaskHandler<TaskT> schedule(const void*, void*);
W
wangguibao 已提交
1043

H
HexToString 已提交
1044
  bool move_task_to_batch(BatchTasks<TaskT>& batchTask);  // NOLINT
W
wangguibao 已提交
1045

H
HexToString 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
 private:
  TaskExecutor(TaskExecutor<TaskT> const& other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> const& other) = delete;
  /*
  TaskExecutor(TaskExecutor<TaskT> && other) = delete;

  TaskExecutor& operator=(TaskExecutor<TaskT> && other) = delete;
  */

W
wangguibao 已提交
1056
  bool _stop;
W
wangguibao 已提交
1057

W
wangguibao 已提交
1058 1059 1060
  // can't use boost::mutex, because some stupid macro
  THREAD_MUTEX_T _mut;
  THREAD_COND_T _cond;
W
wangguibao 已提交
1061

H
HexToString 已提交
1062
  std::list<TaskT*> _task_queue;
W
wangguibao 已提交
1063

W
wangguibao 已提交
1064 1065 1066
  boost::function<int(void*)> _thread_init_fn;
  boost::function<int(void*)> _thread_reset_fn;
  void** _user_thread_contexts;
W
wangguibao 已提交
1067

W
wangguibao 已提交
1068
  std::vector<ThreadContext<TaskT>*> _thread_contexts;
W
wangguibao 已提交
1069

W
wangguibao 已提交
1070
  size_t _batch_size;
H
HexToString 已提交
1071
  bool _overrun;
H
HexToString 已提交
1072
  bool _allow_split_request;
W
wangguibao 已提交
1073

1074
  boost::function<void(const void*, void*)> _fn;
W
wangguibao 已提交
1075 1076
};

H
HexToString 已提交
1077 1078 1079
// TaskExecutorVector is a SingleTon class.
// Each Model corresponding to a TaskExecutor.
// So we need several TaskExecutor when there are more than 1 Model.
H
HexToString 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
template <typename TaskT>
class TaskExecutorVector {
 public:
  static TaskExecutorVector<TaskT>& instance() {
    static TaskExecutorVector<TaskT> singleton;
    return singleton;
  }

  void resize(int size) { _vector_executor.resize(size); }

H
HexToString 已提交
1090 1091 1092 1093
  TaskExecutor<TaskT>& operator[](int task_index) {
    if (_vector_executor.size() <= task_index || task_index <= -1) {
      LOG(ERROR) << "_vector_executor.size() <= task_index or <= -1";
      throw "_vector_executor.size() <= task_index or <= -1";
H
HexToString 已提交
1094
    }
H
HexToString 已提交
1095
    return _vector_executor[task_index];
H
HexToString 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
  }

 private:
  TaskExecutorVector() = default;
  TaskExecutorVector(const TaskExecutorVector<TaskT>& other) = delete;
  TaskExecutorVector& operator=(const TaskExecutorVector<TaskT>& other) =
      delete;
  TaskExecutorVector(TaskExecutorVector<TaskT>&& other) = delete;
  TaskExecutorVector& operator=(TaskExecutorVector<TaskT>&& other) = delete;
  std::vector<TaskExecutor<TaskT>> _vector_executor;
};

H
HexToString 已提交
1108 1109 1110 1111 1112
// TaskManager is actually a wrapper of Request in bsf.
// TaskManager`s schedule() change Request to be TaskT.
// and divided TaskT into several TaskMeta to put into the TaskExecutor`s
// task_queue.
// wait() is a while loop to receive signal when a whole Task is done.
W
wangguibao 已提交
1113
template <typename InItemT, typename OutItemT>
W
wangguibao 已提交
1114
class TaskManager {
W
wangguibao 已提交
1115 1116
 public:
  typedef Task<InItemT, OutItemT> TaskT;
1117 1118
  typedef typename TaskT::InVectorT InVectorT;
  typedef typename TaskT::OutVectorT OutVectorT;
W
wangguibao 已提交
1119

H
HexToString 已提交
1120 1121
  explicit TaskManager(uint32_t model_index)  // NOLINT
      : _model_index(model_index) {}
W
wangguibao 已提交
1122

W
wangguibao 已提交
1123
  ~TaskManager() { wait(); }
W
wangguibao 已提交
1124

1125
  bool schedule(const void* in, void* out);  // NOLINT
W
wangguibao 已提交
1126
  void wait();
W
wangguibao 已提交
1127

W
wangguibao 已提交
1128
  inline void clear() { wait(); }
W
wangguibao 已提交
1129

W
wangguibao 已提交
1130 1131
 private:
  TaskHandler<TaskT> _task_owned;
H
HexToString 已提交
1132
  uint32_t _model_index;
W
wangguibao 已提交
1133
};  // class TaskManager
W
wangguibao 已提交
1134 1135

class AutoMutex {
W
wangguibao 已提交
1136 1137 1138 1139
 public:
  explicit AutoMutex(THREAD_MUTEX_T& mut) : _mut(mut) {
    THREAD_MUTEX_LOCK(&_mut);
  }
W
wangguibao 已提交
1140

W
wangguibao 已提交
1141
  ~AutoMutex() { THREAD_MUTEX_UNLOCK(&_mut); }
W
wangguibao 已提交
1142

W
wangguibao 已提交
1143 1144
 private:
  THREAD_MUTEX_T& _mut;
W
wangguibao 已提交
1145 1146
};

W
wangguibao 已提交
1147 1148
}  // namespace bsf
}  // namespace im
W
wangguibao 已提交
1149

1150
// #include "core/predictor/framework/bsf-inl-tensor.h"
G
guru4elephant 已提交
1151
#include "core/predictor/framework/bsf-inl.h"