utils.py 52.2 KB
Newer Older
Q
Quleaf 已提交
1
# Copyright (c) 2021 Institute for Quantum Computing, Baidu Inc. All Rights Reserved.
Q
Quleaf 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
Q
Quleaf 已提交
16
from math import log2
Q
Quleaf 已提交
17 18 19 20
from math import sqrt
import os.path
import copy
import re
Q
Quleaf 已提交
21
import numpy as np
Q
Quleaf 已提交
22 23 24
from scipy.linalg import logm, sqrtm
from matplotlib import colors as mplcolors
import matplotlib.pyplot as plt
Q
Quleaf 已提交
25
import paddle
Q
Quleaf 已提交
26
from paddle import add, to_tensor
Q
Quleaf 已提交
27
from paddle import kron as kron
Q
Quleaf 已提交
28
from paddle import matmul
Q
Quleaf 已提交
29 30 31
from paddle import transpose
from paddle import concat, ones
from paddle import zeros
Q
Quleaf 已提交
32
from scipy.linalg import logm, sqrtm
Q
Quleaf 已提交
33 34 35 36 37 38
from scipy import sparse
import matplotlib.pyplot as plt
import matplotlib as mpl
from math import sqrt
from paddle_quantum import simulator
import matplotlib.animation as animation
Q
Quleaf 已提交
39

Q
Quleaf 已提交
40 41
__all__ = [
    "partial_trace",
Q
Quleaf 已提交
42
    "state_fidelity",
Q
Quleaf 已提交
43
    "trace_distance",
Q
Quleaf 已提交
44 45 46 47
    "gate_fidelity",
    "purity",
    "von_neumann_entropy",
    "relative_entropy",
Q
Quleaf 已提交
48
    "NKron",
Q
Quleaf 已提交
49
    "dagger",
Q
Quleaf 已提交
50
    "random_pauli_str_generator",
Q
Quleaf 已提交
51 52 53 54 55
    "pauli_str_to_matrix",
    "partial_transpose_2",
    "partial_transpose",
    "negativity",
    "logarithmic_negativity",
Q
Quleaf 已提交
56
    "is_ppt",
Q
Quleaf 已提交
57 58 59 60
    "haar_orthogonal",
    "haar_unitary",
    "haar_state_vector",
    "haar_density_operator",
Q
Quleaf 已提交
61 62 63
    "Hamiltonian",
    "plot_state_in_bloch_sphere",
    "plot_rotation_in_bloch_sphere",
Q
Quleaf 已提交
64 65 66
]


Q
Quleaf 已提交
67 68 69 70
def partial_trace(rho_AB, dim1, dim2, A_or_B):
    r"""计算量子态的偏迹。

    Args:
Q
Quleaf 已提交
71
        rho_AB (Tensor): 输入的量子态
Q
Quleaf 已提交
72 73
        dim1 (int): 系统A的维数
        dim2 (int): 系统B的维数
Q
Quleaf 已提交
74
        A_or_B (int): 1或者2,1表示计算系统A上的偏迹,2表示计算系统B上的偏迹
Q
Quleaf 已提交
75 76

    Returns:
Q
Quleaf 已提交
77
        Tensor: 输入的量子态的偏迹
Q
Quleaf 已提交
78

Q
Quleaf 已提交
79
    """
Q
Quleaf 已提交
80 81 82
    if A_or_B == 2:
        dim1, dim2 = dim2, dim1

Q
Quleaf 已提交
83
    idty_np = np.identity(dim2).astype("complex128")
Q
Quleaf 已提交
84
    idty_B = to_tensor(idty_np)
Q
Quleaf 已提交
85

Q
Quleaf 已提交
86
    zero_np = np.zeros([dim2, dim2], "complex128")
Q
Quleaf 已提交
87
    res = to_tensor(zero_np)
Q
Quleaf 已提交
88 89

    for dim_j in range(dim1):
Q
Quleaf 已提交
90
        row_top = zeros([1, dim_j], dtype="float64")
Q
Quleaf 已提交
91
        row_mid = ones([1, 1], dtype="float64")
Q
Quleaf 已提交
92
        row_bot = zeros([1, dim1 - dim_j - 1], dtype="float64")
Q
Quleaf 已提交
93 94
        bra_j = concat([row_top, row_mid, row_bot], axis=1)
        bra_j = paddle.cast(bra_j, 'complex128')
Q
Quleaf 已提交
95

Q
Quleaf 已提交
96
        if A_or_B == 1:
Q
Quleaf 已提交
97
            row_tmp = kron(bra_j, idty_B)
Q
Quleaf 已提交
98
            row_tmp_conj = paddle.conj(row_tmp)
Q
Quleaf 已提交
99
            res = add(res, matmul(matmul(row_tmp, rho_AB), transpose(row_tmp_conj, perm=[1, 0]), ), )
Q
Quleaf 已提交
100 101

        if A_or_B == 2:
Q
Quleaf 已提交
102
            row_tmp = kron(idty_B, bra_j)
Q
Quleaf 已提交
103
            row_tmp_conj = paddle.conj(row_tmp)
Q
Quleaf 已提交
104
            res = add(res, matmul(matmul(row_tmp, rho_AB), transpose(row_tmp_conj, perm=[1, 0]), ), )
Q
Quleaf 已提交
105 106 107 108

    return res


Q
Quleaf 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def partial_trace_discontiguous(rho, preserve_qubits=None):
    r"""计算量子态的偏迹,可选取任意子系统。

    Args:
        rho (Tensor): 输入的量子态
        preserve_qubits (list): 要保留的量子比特,默认为 None,表示全保留
    """
    if preserve_qubits is None:
        return rho
    else:
        n = int(log2(rho.size) // 2)
        num_preserve = len(preserve_qubits)

        shape = paddle.ones((n + 1,))
        shape = 2 * shape
Q
Quleaf 已提交
124
        shape[n] = 2 ** n
Q
Quleaf 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        shape = paddle.cast(shape, "int32")
        identity = paddle.eye(2 ** n)
        identity = paddle.reshape(identity, shape=shape)
        discard = list()
        for idx in range(0, n):
            if idx not in preserve_qubits:
                discard.append(idx)
        addition = [n]
        preserve_qubits.sort()

        preserve_qubits = paddle.to_tensor(preserve_qubits)
        discard = paddle.to_tensor(discard)
        addition = paddle.to_tensor(addition)
        permute = paddle.concat([discard, preserve_qubits, addition])

        identity = paddle.transpose(identity, perm=permute)
Q
Quleaf 已提交
141
        identity = paddle.reshape(identity, (2 ** n, 2 ** n))
Q
Quleaf 已提交
142 143 144 145 146 147 148 149 150 151 152

        result = np.zeros((2 ** num_preserve, 2 ** num_preserve), dtype="complex64")
        result = paddle.to_tensor(result)

        for i in range(0, 2 ** num_preserve):
            bra = identity[i * 2 ** num_preserve:(i + 1) * 2 ** num_preserve, :]
            result = result + matmul(matmul(bra, rho), transpose(bra, perm=[1, 0]))

        return result


Q
Quleaf 已提交
153 154
def state_fidelity(rho, sigma):
    r"""计算两个量子态的保真度。
Q
Quleaf 已提交
155

Q
Quleaf 已提交
156 157
    .. math::
        F(\rho, \sigma) = \text{tr}(\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}})
Q
Quleaf 已提交
158

Q
Quleaf 已提交
159 160 161
    Args:
        rho (numpy.ndarray): 量子态的密度矩阵形式
        sigma (numpy.ndarray): 量子态的密度矩阵形式
Q
Quleaf 已提交
162

Q
Quleaf 已提交
163 164
    Returns:
        float: 输入的量子态之间的保真度
Q
Quleaf 已提交
165
    """
Q
Quleaf 已提交
166
    assert rho.shape == sigma.shape, 'The shape of two quantum states are different'
Q
Quleaf 已提交
167
    fidelity = np.trace(sqrtm(sqrtm(rho) @ sigma @ sqrtm(rho))).real
Q
Quleaf 已提交
168 169 170 171

    return fidelity


Q
Quleaf 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
def trace_distance(rho, sigma):
    r"""计算两个量子态的迹距离。

    .. math::
        D(\rho, \sigma) = 1 / 2 * \text{tr}|\rho-\sigma|

    Args:
        rho (numpy.ndarray): 量子态的密度矩阵形式
        sigma (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态之间的迹距离
    """
    assert rho.shape == sigma.shape, 'The shape of two quantum states are different'
    A = rho - sigma
    distance = 1 / 2 * np.sum(np.abs(np.linalg.eigvals(A)))

    return distance


Q
Quleaf 已提交
192 193 194 195 196 197 198 199 200 201
def gate_fidelity(U, V):
    r"""计算两个量子门的保真度。

    .. math::

        F(U, V) = |\text{tr}(UV^\dagger)|/2^n

    :math:`U` 是一个 :math:`2^n\times 2^n` 的 Unitary 矩阵。

    Args:
Q
Quleaf 已提交
202 203
        U (numpy.ndarray): 量子门 :math:`U` 的酉矩阵形式
        V (numpy.ndarray): 量子门 :math:`V` 的酉矩阵形式
Q
Quleaf 已提交
204 205 206

    Returns:
        float: 输入的量子门之间的保真度
Q
Quleaf 已提交
207
    """
Q
Quleaf 已提交
208 209
    assert U.shape == V.shape, 'The shape of two unitary matrices are different'
    dim = U.shape[0]
Q
Quleaf 已提交
210 211
    fidelity = np.absolute(np.trace(np.matmul(U, V.conj().T))) / dim

Q
Quleaf 已提交
212
    return fidelity
Q
Quleaf 已提交
213 214


Q
Quleaf 已提交
215 216
def purity(rho):
    r"""计算量子态的纯度。
Q
Quleaf 已提交
217

Q
Quleaf 已提交
218 219 220 221 222 223 224 225 226
    .. math::

        P = \text{tr}(\rho^2)

    Args:
        rho (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的纯度
Q
Quleaf 已提交
227
    """
Q
Quleaf 已提交
228
    gamma = np.trace(np.matmul(rho, rho))
Q
Quleaf 已提交
229

Q
Quleaf 已提交
230
    return gamma.real
Q
Quleaf 已提交
231

Q
Quleaf 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244

def von_neumann_entropy(rho):
    r"""计算量子态的冯诺依曼熵。

    .. math::

        S = -\text{tr}(\rho \log(\rho))

    Args:
        rho(numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的冯诺依曼熵
Q
Quleaf 已提交
245
    """
Q
Quleaf 已提交
246
    rho_eigenvalue, _ = np.linalg.eig(rho)
Q
Quleaf 已提交
247 248
    entropy = -np.sum(rho_eigenvalue * np.log(rho_eigenvalue))

Q
Quleaf 已提交
249
    return entropy.real
Q
Quleaf 已提交
250 251


Q
Quleaf 已提交
252 253
def relative_entropy(rho, sig):
    r"""计算两个量子态的相对熵。
Q
Quleaf 已提交
254

Q
Quleaf 已提交
255
    .. math::
Q
Quleaf 已提交
256

Q
Quleaf 已提交
257 258 259 260 261 262 263 264
        S(\rho \| \sigma)=\text{tr} \rho(\log \rho-\log \sigma)

    Args:
        rho (numpy.ndarray): 量子态的密度矩阵形式
        sig (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态之间的相对熵
Q
Quleaf 已提交
265
    """
Q
Quleaf 已提交
266
    assert rho.shape == sig.shape, 'The shape of two quantum states are different'
Q
Quleaf 已提交
267
    res = np.trace(rho @ logm(rho) - rho @ logm(sig))
Q
Quleaf 已提交
268 269 270 271 272 273 274 275 276 277 278 279
    return res.real


def NKron(matrix_A, matrix_B, *args):
    r"""计算两个及以上的矩阵的Kronecker积。

    Args:
        matrix_A (numpy.ndarray): 一个矩阵
        matrix_B (numpy.ndarray): 一个矩阵
        *args (numpy.ndarray): 其余矩阵

    Returns:
Q
Quleaf 已提交
280
        Tensor: 输入矩阵的Kronecker积
Q
Quleaf 已提交
281 282 283 284 285 286 287 288 289 290

    .. code-block:: python
    
        from paddle_quantum.state import density_op_random
        from paddle_quantum.utils import NKron
        A = density_op_random(2)
        B = density_op_random(2)
        C = density_op_random(2)
        result = NKron(A, B, C)

Q
Quleaf 已提交
291
    ``result`` 应为 :math:`A \otimes B \otimes C`
Q
Quleaf 已提交
292
    """
Q
Quleaf 已提交
293
    return reduce(lambda result, index: np.kron(result, index), args, np.kron(matrix_A, matrix_B), )
Q
Quleaf 已提交
294 295


Q
Quleaf 已提交
296
def dagger(matrix):
Q
Quleaf 已提交
297
    r"""计算矩阵的埃尔米特转置,即Hermitian transpose。
Q
Quleaf 已提交
298

Q
Quleaf 已提交
299
    Args:
Q
Quleaf 已提交
300
        matrix (Tensor): 需要埃尔米特转置的矩阵
Q
Quleaf 已提交
301

Q
Quleaf 已提交
302
    Returns:
Q
Quleaf 已提交
303
        Tensor: 输入矩阵的埃尔米特转置
Q
Quleaf 已提交
304

Q
Quleaf 已提交
305
    代码示例:
Q
Quleaf 已提交
306

Q
Quleaf 已提交
307 308
    .. code-block:: python
    
Q
Quleaf 已提交
309
        from paddle_quantum.utils import dagger
Q
Quleaf 已提交
310
        import numpy as np
Q
Quleaf 已提交
311 312
        rho = paddle.to_tensor(np.array([[1+1j, 2+2j], [3+3j, 4+4j]]))
        print(dagger(rho).numpy())
Q
Quleaf 已提交
313

Q
Quleaf 已提交
314
    ::
Q
Quleaf 已提交
315

Q
Quleaf 已提交
316 317
        [[1.-1.j 3.-3.j]
        [2.-2.j 4.-4.j]]
Q
Quleaf 已提交
318
    """
Q
Quleaf 已提交
319
    matrix_conj = paddle.conj(matrix)
Q
Quleaf 已提交
320
    matrix_dagger = transpose(matrix_conj, perm=[1, 0])
Q
Quleaf 已提交
321 322

    return matrix_dagger
Q
Quleaf 已提交
323 324


Q
Quleaf 已提交
325 326
def random_pauli_str_generator(n, terms=3):
    r"""随机生成一个可观测量(observable)的列表( ``list`` )形式。
Q
Quleaf 已提交
327

Q
Quleaf 已提交
328 329 330
    一个可观测量 :math:`O=0.3X\otimes I\otimes I+0.5Y\otimes I\otimes Z` 的
    列表形式为 ``[[0.3, 'x0'], [0.5, 'y0,z2']]`` 。这样一个可观测量是由
    调用 ``random_pauli_str_generator(3, terms=2)`` 生成的。
Q
Quleaf 已提交
331

Q
Quleaf 已提交
332 333 334 335 336 337
    Args:
        n (int): 量子比特数量
        terms (int, optional): 可观测量的项数

    Returns:
        list: 随机生成的可观测量的列表形式
Q
Quleaf 已提交
338
    """
Q
Quleaf 已提交
339
    pauli_str = []
Q
Quleaf 已提交
340
    for sublen in np.random.randint(1, high=n + 1, size=terms):
Q
Quleaf 已提交
341
        # Tips: -1 <= coeff < 1
Q
Quleaf 已提交
342
        coeff = np.random.rand() * 2 - 1
Q
Quleaf 已提交
343 344
        ops = np.random.choice(['x', 'y', 'z'], size=sublen)
        pos = np.random.choice(range(n), size=sublen, replace=False)
Q
Quleaf 已提交
345
        op_list = [ops[i] + str(pos[i]) for i in range(sublen)]
Q
Quleaf 已提交
346
        pauli_str.append([coeff, ','.join(op_list)])
Q
Quleaf 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    return pauli_str


def pauli_str_to_matrix(pauli_str, n):
    r"""将输入的可观测量(observable)的列表( ``list`` )形式转换为其矩阵形式。

    如输入的 ``pauli_str`` 为 ``[[0.7, 'z0,x1'], [0.2, 'z1']]`` 且 ``n=3`` ,
    则此函数返回可观测量 :math:`0.7Z\otimes X\otimes I+0.2I\otimes Z\otimes I` 的
    矩阵形式。

    Args:
        pauli_str (list): 一个可观测量的列表形式
        n (int): 量子比特数量

    Returns:
        numpy.ndarray: 输入列表对应的可观测量的矩阵形式
Q
Quleaf 已提交
363
    """
Q
Quleaf 已提交
364 365
    pauli_dict = {'i': np.eye(2) + 0j, 'x': np.array([[0, 1], [1, 0]]) + 0j,
                  'y': np.array([[0, -1j], [1j, 0]]), 'z': np.array([[1, 0], [0, -1]]) + 0j}
Q
Quleaf 已提交
366 367 368 369

    # Parse pauli_str; 'x0,z1,y4' to 'xziiy'
    new_pauli_str = []
    for coeff, op_str in pauli_str:
Q
Quleaf 已提交
370 371
        init = list('i' * n)
        op_list = re.split(r',\s*', op_str.lower())
Q
Quleaf 已提交
372
        for op in op_list:
Q
Quleaf 已提交
373 374 375 376 377 378
            if len(op) > 1:
                pos = int(op[1:])
                assert pos < n, 'n is too small'
                init[pos] = op[0]
            elif op.lower() != 'i':
                raise ValueError('Only Pauli operator "I" can be accepted without specifying its position')
Q
Quleaf 已提交
379 380 381 382 383 384 385
        new_pauli_str.append([coeff, ''.join(init)])

    # Convert new_pauli_str to matrix; 'xziiy' to NKron(x, z, i, i, y)
    matrices = []
    for coeff, op_str in new_pauli_str:
        sub_matrices = []
        for op in op_str:
Q
Quleaf 已提交
386
            sub_matrices.append(pauli_dict[op.lower()])
Q
Quleaf 已提交
387 388 389 390 391 392
        if len(op_str) == 1:
            matrices.append(coeff * sub_matrices[0])
        else:
            matrices.append(coeff * NKron(sub_matrices[0], sub_matrices[1], *sub_matrices[2:]))

    return sum(matrices)
Q
Quleaf 已提交
393

Q
Quleaf 已提交
394

Q
Quleaf 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def partial_transpose_2(density_op, sub_system=None):
    r"""计算输入量子态的 partial transpose :math:`\rho^{T_A}`

    Args:
        density_op (numpy.ndarray): 量子态的密度矩阵形式
        sub_system (int): 1或2,表示关于哪个子系统进行 partial transpose,默认为第二个

    Returns:
        float: 输入的量子态的 partial transpose

    代码示例:

    .. code-block:: python

        from paddle_quantum.utils import partial_transpose_2
        rho_test = np.arange(1,17).reshape(4,4)
        partial_transpose_2(rho_test, sub_system=1)

    ::

       [[ 1,  2,  9, 10],
        [ 5,  6, 13, 14],
        [ 3,  4, 11, 12],
        [ 7,  8, 15, 16]]
    """
    sys_idx = 2 if sub_system is None else 1

    # Copy the density matrix and not corrupt the original one
Q
Quleaf 已提交
423
    transposed_density_op = np.copy(density_op)
Q
Quleaf 已提交
424 425 426
    if sys_idx == 2:
        for j in [0, 2]:
            for i in [0, 2]:
Q
Quleaf 已提交
427
                transposed_density_op[i:i + 2, j:j + 2] = density_op[i:i + 2, j:j + 2].transpose()
Q
Quleaf 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    else:
        transposed_density_op[2:4, 0:2] = density_op[0:2, 2:4]
        transposed_density_op[0:2, 2:4] = density_op[2:4, 0:2]

    return transposed_density_op


def partial_transpose(density_op, n):
    r"""计算输入量子态的 partial transpose :math:`\rho^{T_A}`。

    Args:
        density_op (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的 partial transpose
    """

    # Copy the density matrix and not corrupt the original one
Q
Quleaf 已提交
446
    transposed_density_op = np.copy(density_op)
Q
Quleaf 已提交
447 448 449
    for j in range(0, 2 ** n, 2):
        for i in range(0, 2 ** n, 2):
            transposed_density_op[i:i + 2, j:j + 2] = density_op[i:i + 2, j:j + 2].transpose()
Q
Quleaf 已提交
450 451 452

    return transposed_density_op

Q
Quleaf 已提交
453

Q
Quleaf 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def negativity(density_op):
    r"""计算输入量子态的 Negativity :math:`N = ||\frac{\rho^{T_A}-1}{2}||`。

    Args:
        density_op (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的 Negativity

    代码示例:

    .. code-block:: python

        from paddle_quantum.utils import negativity
        from paddle_quantum.state import bell_state
        rho = bell_state(2)
        print("Negativity of the Bell state is:", negativity(rho))

    ::

        Negativity of the Bell state is: 0.5
    """
    # Implement the partial transpose
    density_op_T = partial_transpose_2(density_op)

    # Calculate through the equivalent expression N = sum(abs(\lambda_i)) when \lambda_i<0
    n = 0
Q
Quleaf 已提交
481
    eigen_val, _ = np.linalg.eig(density_op_T)
Q
Quleaf 已提交
482 483
    for val in eigen_val:
        if val < 0:
Q
Quleaf 已提交
484
            n = n + np.abs(val)
Q
Quleaf 已提交
485 486
    return n

Q
Quleaf 已提交
487

Q
Quleaf 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
def logarithmic_negativity(density_op):
    r"""计算输入量子态的 Logarithmic Negativity :math:`E_N = ||\rho^{T_A}||`。

    Args:
        density_op (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        float: 输入的量子态的 Logarithmic Negativity

    代码示例:

    .. code-block:: python

        from paddle_quantum.utils import logarithmic_negativity
        from paddle_quantum.state import bell_state
        rho = bell_state(2)
        print("Logarithmic negativity of the Bell state is:", logarithmic_negativity(rho))

    ::

        Logarithmic negativity of the Bell state is: 1.0
    """
    # Calculate the negativity
    n = negativity(density_op)

    # Calculate through the equivalent expression
Q
Quleaf 已提交
514
    log2_n = np.log2(2 * n + 1)
Q
Quleaf 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    return log2_n


def is_ppt(density_op):
    r"""计算输入量子态是否满足 PPT 条件。

    Args:
        density_op (numpy.ndarray): 量子态的密度矩阵形式

    Returns:
        bool: 输入的量子态是否满足 PPT 条件

    代码示例:

    .. code-block:: python

        from paddle_quantum.utils import is_ppt
        from paddle_quantum.state import bell_state
        rho = bell_state(2)
        print("Whether the Bell state satisfies PPT condition:", is_ppt(rho))

    ::

        Whether the Bell state satisfies PPT condition: False
    """
    # By default the PPT condition is satisfied
    ppt = True

    # Detect negative eigenvalues from the partial transposed density_op
    if negativity(density_op) > 0:
        ppt = False
Q
Quleaf 已提交
546 547 548
    return ppt


Q
Quleaf 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
def haar_orthogonal(n):
    r"""生成一个服从 Haar random 的正交矩阵。采样算法参考文献:arXiv:math-ph/0609050v2

        Args:
            n (int): 正交矩阵对应的量子比特数

        Returns:
            numpy.ndarray: 一个形状为 ``(2**n, 2**n)`` 随机正交矩阵
    """
    # Matrix dimension
    d = 2 ** n
    # Step 1: sample from Ginibre ensemble
    g = (np.random.randn(d, d))
    # Step 2: perform QR decomposition of G
    q, r = np.linalg.qr(g)
    # Step 3: make the decomposition unique
    lam = np.diag(r) / abs(np.diag(r))
    u = q @ np.diag(lam)

    return u


def haar_unitary(n):
    r"""生成一个服从 Haar random 的酉矩阵。采样算法参考文献:arXiv:math-ph/0609050v2

        Args:
            n (int): 酉矩阵对应的量子比特数

        Returns:
            numpy.ndarray: 一个形状为 ``(2**n, 2**n)`` 随机酉矩阵
    """
    # Matrix dimension
    d = 2 ** n
    # Step 1: sample from Ginibre ensemble
    g = (np.random.randn(d, d) + 1j * np.random.randn(d, d)) / np.sqrt(2)
    # Step 2: perform QR decomposition of G
    q, r = np.linalg.qr(g)
    # Step 3: make the decomposition unique
    lam = np.diag(r) / abs(np.diag(r))
    u = q @ np.diag(lam)

    return u


def haar_state_vector(n, real=False):
    r"""生成一个服从 Haar random 的态矢量。

        Args:
            n (int): 量子态的量子比特数
            real (bool): 生成的态矢量是否为实态矢量,默认为 ``False``

        Returns:
            numpy.ndarray: 一个形状为 ``(2**n, 1)`` 随机态矢量
    """
    # Vector dimension
    d = 2 ** n
    if real:
        # Generate a Haar random orthogonal matrix
        o = haar_orthogonal(n)
        # Perform u onto |0>, i.e., the first column of o
        phi = o[:, 0]
    else:
        # Generate a Haar random unitary
        u = haar_unitary(n)
        # Perform u onto |0>, i.e., the first column of u
        phi = u[:, 0]

    return phi


def haar_density_operator(n, k=None, real=False):
    r"""生成一个服从 Haar random 的密度矩阵。

        Args:
            n (int): 量子态的量子比特数
            k (int): 密度矩阵的秩,默认为 ``None``,表示满秩
            real (bool): 生成的密度矩阵是否为实矩阵,默认为 ``False``

        Returns:
            numpy.ndarray: 一个形状为 ``(2**n, 2**n)`` 随机密度矩阵
    """
    d = 2 ** n
    k = k if k is not None else d
    assert 0 < k <= d, 'rank is an invalid number'
    if real:
        ginibre_matrix = np.random.randn(d, k)
        rho = ginibre_matrix @ ginibre_matrix.T
    else:
        ginibre_matrix = np.random.randn(d, k) + 1j * np.random.randn(d, k)
        rho = ginibre_matrix @ ginibre_matrix.conj().T

    return rho / np.trace(rho)


Q
Quleaf 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
class Hamiltonian:
    r""" Paddle Quantum 中的 Hamiltonian ``class``。

    用户可以通过一个 Pauli string 来实例化该 ``class``。
    """
    def __init__(self, pauli_str, compress=True):
        r""" 创建一个 Hamiltonian 类。

        Args:
            pauli_str (list): 用列表定义的 Hamiltonian,如 ``[(1, 'Z0, Z1'), (2, 'I')]``
            compress (bool): 是否对输入的 list 进行自动合并(例如 ``(1, 'Z0, Z1')`` 和 ``(2, 'Z1, Z0')`` 这两项将被自动合并),默认为 ``True``

        Note:
            如果设置 ``compress=False``,则不会对输入的合法性进行检验。
        """
        self.__coefficients = None
        self.__terms = None
        self.__pauli_words_r = []
        self.__pauli_words = []
        self.__sites = []
        self.__nqubits = None
        # when internally updating the __pauli_str, be sure to set __update_flag to True
        self.__pauli_str = pauli_str
        self.__update_flag = True
        self.__decompose()
        if compress:
            self.__compress()

    def __getitem__(self, indices):
        new_pauli_str = []
        if isinstance(indices, int):
            indices = [indices]
        elif isinstance(indices, slice):
            indices = list(range(self.n_terms)[indices])
        elif isinstance(indices, tuple):
            indices = list(indices)

        for index in indices:
            new_pauli_str.append([self.coefficients[index], ','.join(self.terms[index])])
        return Hamiltonian(new_pauli_str, compress=False)

    def __add__(self, h_2):
        new_pauli_str = self.pauli_str.copy()
        if isinstance(h_2, float) or isinstance(h_2, int):
            new_pauli_str.extend([[float(h_2), 'I']])
        else:
            new_pauli_str.extend(h_2.pauli_str)
        return Hamiltonian(new_pauli_str)

    def __mul__(self, other):
        new_pauli_str = copy.deepcopy(self.pauli_str)
        for i in range(len(new_pauli_str)):
            new_pauli_str[i][0] *= other
        return Hamiltonian(new_pauli_str, compress=False)

    def __sub__(self, other):
        return self.__add__(other.__mul__(-1))

    def __str__(self):
        str_out = ''
        for idx in range(self.n_terms):
            str_out += '{} '.format(self.coefficients[idx])
            for _ in range(len(self.terms[idx])):
                str_out += self.terms[idx][_]
                if _ != len(self.terms[idx]) - 1:
                    str_out += ', '
            if idx != self.n_terms - 1:
                str_out += '\n'
        return str_out

    def __repr__(self):
        return 'paddle_quantum.Hamiltonian object: \n' + self.__str__()

    @property
    def n_terms(self):
        r"""返回该哈密顿量的项数

        Returns:
            int :哈密顿量的项数
        """
        return len(self.__pauli_str)

    @property
    def pauli_str(self):
        r"""返回哈密顿量对应的 Pauli string

        Returns:
            list : 哈密顿量对应的 Pauli string
        """
        return self.__pauli_str

    @property
    def terms(self):
        r"""返回哈密顿量中的每一项构成的列表

        Returns:
            list :哈密顿量中的每一项,i.e. ``[['Z0, Z1'], ['I']]``
        """
        if self.__update_flag:
            self.__decompose()
            return self.__terms
        else:
            return self.__terms

    @property
    def coefficients(self):
        r""" 返回哈密顿量中的每一项对应的系数构成的列表

        Returns:
Q
Quleaf 已提交
752
            list :哈密顿量中每一项的系数,i.e. ``[1.0, 2.0]``
Q
Quleaf 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
        """
        if self.__update_flag:
            self.__decompose()
            return self.__coefficients
        else:
            return self.__coefficients

    @property
    def pauli_words(self):
        r"""返回哈密顿量中每一项对应的 Pauli word 构成的列表

        Returns:
            list :每一项对应的 Pauli word,i.e. ``['ZIZ', 'IIX']``
        """
        if self.__update_flag:
            self.__decompose()
            return self.__pauli_words
        else:
            return self.__pauli_words

    @property
    def pauli_words_r(self):
        r"""返回哈密顿量中每一项对应的简化(不包含 I) Pauli word 组成的列表

        Returns:
            list :不包含 "I" 的 Pauli word 构成的列表,i.e. ``['ZXZZ', 'Z', 'X']``
        """
        if self.__update_flag:
            self.__decompose()
            return self.__pauli_words_r
        else:
            return self.__pauli_words_r

    @property
    def sites(self):
        r"""返回该哈密顿量中的每一项对应的量子比特编号组成的列表

        Returns:
            list :哈密顿量中每一项所对应的量子比特编号构成的列表,i.e. ``[[1, 2], [0]]``
        """
        if self.__update_flag:
            self.__decompose()
            return self.__sites
        else:
            return self.__sites

    @property
    def n_qubits(self):
        r"""返回该哈密顿量对应的量子比特数

        Returns:
            int :量子比特数
        """
        if self.__update_flag:
            self.__decompose()
            return self.__nqubits
        else:
            return self.__nqubits

    def __decompose(self):
        r"""将哈密顿量分解为不同的形式

        Notes:
            这是一个内部函数,你不需要直接使用它
            这是一个比较基础的函数,它负责将输入的 Pauli string 拆分为不同的形式并存储在内部变量中
        """
        self.__pauli_words = []
        self.__pauli_words_r = []
        self.__sites = []
        self.__terms = []
        self.__coefficients = []
        self.__nqubits = 1
        new_pauli_str = []
        for coefficient, pauli_term in self.__pauli_str:
            pauli_word_r = ''
            site = []
            single_pauli_terms = re.split(r',\s*', pauli_term.upper())
            self.__coefficients.append(float(coefficient))
            self.__terms.append(single_pauli_terms)
            for single_pauli_term in single_pauli_terms:
                match_I = re.match(r'I', single_pauli_term, flags=re.I)
                if match_I:
                    assert single_pauli_term[0].upper() == 'I', \
                        'The offset is defined with a sole letter "I", i.e. (3.0, "I")'
                    pauli_word_r += 'I'
                    site.append('')
                else:
                    match = re.match(r'([XYZ])([0-9]+)', single_pauli_term, flags=re.I)
                    if match:
                        pauli_word_r += match.group(1).upper()
                        assert int(match.group(2)) not in site, 'each Pauli operator should act on different qubit'
                        site.append(int(match.group(2)))
                    else:
                        raise Exception(
                            'Operators should be defined with a string composed of Pauli operators followed' +
                            'by qubit index on which it act, separated with ",". i.e. "Z0, X1"')
                    self.__nqubits = max(self.__nqubits, int(match.group(2)) + 1)
            self.__pauli_words_r.append(pauli_word_r)
            self.__sites.append(site)
            new_pauli_str.append([float(coefficient), pauli_term.upper()])

        for term_index in range(len(self.__pauli_str)):
            pauli_word = ['I' for _ in range(self.__nqubits)]
            site = self.__sites[term_index]
            for site_index in range(len(site)):
                if type(site[site_index]) == int:
                    pauli_word[site[site_index]] = self.__pauli_words_r[term_index][site_index]
            self.__pauli_words.append(''.join(pauli_word))
            self.__pauli_str = new_pauli_str
            self.__update_flag = False

    def __compress(self):
        r""" 对同类项进行合并。

        Notes:
            这是一个内部函数,你不需要直接使用它
        """
        if self.__update_flag:
            self.__decompose()
        else:
            pass
        new_pauli_str = []
        flag_merged = [False for _ in range(self.n_terms)]
        for term_idx_1 in range(self.n_terms):
            if not flag_merged[term_idx_1]:
                for term_idx_2 in range(term_idx_1 + 1, self.n_terms):
                    if not flag_merged[term_idx_2]:
                        if self.pauli_words[term_idx_1] == self.pauli_words[term_idx_2]:
                            self.__coefficients[term_idx_1] += self.__coefficients[term_idx_2]
                            flag_merged[term_idx_2] = True
                    else:
                        pass
                if self.__coefficients[term_idx_1] != 0:
                    new_pauli_str.append([self.__coefficients[term_idx_1], ','.join(self.__terms[term_idx_1])])
        self.__pauli_str = new_pauli_str
        self.__update_flag = True

    def decompose_with_sites(self):
Q
Quleaf 已提交
891
        r"""将 pauli_str 分解为系数、泡利字符串的简化形式以及它们分别作用的量子比特下标。
Q
Quleaf 已提交
892 893

        Returns:
Q
Quleaf 已提交
894 895 896 897 898 899
            tuple: 包含如下元素的 tuple:

                 - coefficients (list): 元素为每一项的系数
                 - pauli_words_r (list): 元素为每一项的泡利字符串的简化形式,例如 'Z0, Z1, X3' 这一项的泡利字符串为 'ZZX'
                 - sites (list): 元素为每一项作用的量子比特下标,例如 'Z0, Z1, X3' 这一项的 site 为 [0, 1, 3]

Q
Quleaf 已提交
900 901 902 903 904 905
        """
        if self.__update_flag:
            self.__decompose()
        return self.coefficients, self.__pauli_words_r, self.__sites

    def decompose_pauli_words(self):
Q
Quleaf 已提交
906
        r"""将 pauli_str 分解为系数和泡利字符串。
Q
Quleaf 已提交
907 908

        Returns:
Q
Quleaf 已提交
909 910 911 912
            tuple: 包含如下元素的 tuple:

                - coefficients(list): 元素为每一项的系数
                - pauli_words(list): 元素为每一项的泡利字符串,例如 'Z0, Z1, X3' 这一项的泡利字符串为 'ZZIX'
Q
Quleaf 已提交
913 914 915 916 917 918 919 920
        """
        if self.__update_flag:
            self.__decompose()
        else:
            pass
        return self.coefficients, self.__pauli_words

    def construct_h_matrix(self):
Q
Quleaf 已提交
921
        r"""构建 Hamiltonian 在 Z 基底下的矩阵。
Q
Quleaf 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946

        Returns:
            np.ndarray: Z 基底下的哈密顿量矩阵形式
        """
        coefs, pauli_words, sites = self.decompose_with_sites()
        n_qubit = 1
        for site in sites:
            if type(site[0]) is int:
                n_qubit = max(n_qubit, max(site) + 1)
        h_matrix = np.zeros([2 ** n_qubit, 2 ** n_qubit], dtype='complex64')
        spin_ops = SpinOps(n_qubit, use_sparse=True)
        for idx in range(len(coefs)):
            op = coefs[idx] * sparse.eye(2 ** n_qubit, dtype='complex64')
            for site_idx in range(len(sites[idx])):
                if re.match(r'X', pauli_words[idx][site_idx], re.I):
                    op = op.dot(spin_ops.sigx_p[sites[idx][site_idx]])
                elif re.match(r'Y', pauli_words[idx][site_idx], re.I):
                    op = op.dot(spin_ops.sigy_p[sites[idx][site_idx]])
                elif re.match(r'Z', pauli_words[idx][site_idx], re.I):
                    op = op.dot(spin_ops.sigz_p[sites[idx][site_idx]])
            h_matrix += op
        return h_matrix


class SpinOps:
Q
Quleaf 已提交
947
    r"""矩阵表示下的自旋算符,可以用来构建哈密顿量矩阵或者自旋可观测量。
Q
Quleaf 已提交
948 949 950

    """
    def __init__(self, size: int, use_sparse=False):
Q
Quleaf 已提交
951
        r"""SpinOps 的构造函数,用于实例化一个 SpinOps 对象。
Q
Quleaf 已提交
952 953 954

        Args:
            size (int): 系统的大小(有几个量子比特)
Q
Quleaf 已提交
955
            use_sparse (bool): 是否使用 sparse matrix 计算,默认为 ``False``
Q
Quleaf 已提交
956 957 958
        """
        self.size = size
        self.id = sparse.eye(2, dtype='complex128')
Q
Quleaf 已提交
959 960 961 962 963 964
        self.__sigz = sparse.bsr.bsr_matrix([[1, 0], [0, -1]], dtype='complex64')
        self.__sigy = sparse.bsr.bsr_matrix([[0, -1j], [1j, 0]], dtype='complex64')
        self.__sigx = sparse.bsr.bsr_matrix([[0, 1], [1, 0]], dtype='complex64')
        self.__sigz_p = []
        self.__sigy_p = []
        self.__sigx_p = []
Q
Quleaf 已提交
965 966
        self.__sparse = use_sparse
        for i in range(self.size):
Q
Quleaf 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
            self.__sigz_p.append(self.__direct_prod_op(spin_op=self.__sigz, spin_index=i))
            self.__sigy_p.append(self.__direct_prod_op(spin_op=self.__sigy, spin_index=i))
            self.__sigx_p.append(self.__direct_prod_op(spin_op=self.__sigx, spin_index=i))

    @property
    def sigz_p(self):
        r""" :math:`Z` 基底下的 :math:`S^z_i` 算符。

        Returns:
            list : :math:`S^z_i` 算符组成的列表,其中每一项对应不同的 :math:`i`
        """
        return self.__sigz_p

    @property
    def sigy_p(self):
        r""" :math:`Z` 基底下的 :math:`S^y_i` 算符。

        Returns:
            list : :math:`S^y_i` 算符组成的列表,其中每一项对应不同的 :math:`i`
        """
        return self.__sigy_p

    @property
    def sigx_p(self):
        r""" :math:`Z` 基底下的 :math:`S^x_i` 算符。

        Returns:
            list : :math:`S^x_i` 算符组成的列表,其中每一项对应不同的 :math:`i`
        """
        return self.__sigx_p
Q
Quleaf 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    def __direct_prod_op(self, spin_op, spin_index):
        r"""直积,得到第 n 个自旋(量子比特)上的自旋算符

        Args:
            spin_op: 单体自旋算符
            spin_index: 标记第 n 个自旋(量子比特)

        Returns:
            scipy.sparse or np.ndarray: 直积后的自旋算符,其数据类型取决于 self.__use_sparse
        """
        s_p = copy.copy(spin_op)
        for i in range(self.size):
            if i < spin_index:
                s_p = sparse.kron(self.id, s_p)
            elif i > spin_index:
                s_p = sparse.kron(s_p, self.id)
        if self.__sparse:
            return s_p
        else:
            return s_p.toarray()


def __input_args_dtype_check(
        show_arrow,
        save_gif,
        filename,
        view_angle,
        view_dist
):
    r"""
    该函数实现对输入默认参数的数据类型检查,保证输入函数中的参数为所允许的数据类型

    Args:
Q
Quleaf 已提交
1031 1032 1033 1034 1035 1036
        show_arrow (bool): 是否展示向量的箭头,默认为 False
        save_gif (bool): 是否存储 gif 动图
        filename (str): 存储的 gif 动图的名字
        view_angle (list or tuple): 视图的角度,
            第一个元素为关于xy平面的夹角[0-360],第二个元素为关于xz平面的夹角[0-360], 默认为 (30, 45)
        view_dist (int): 视图的距离,默认为 7
Q
Quleaf 已提交
1037 1038 1039 1040
    """

    if show_arrow is not None:
        assert type(show_arrow) == bool, \
Q
Quleaf 已提交
1041
            'the type of "show_arrow" should be "bool".'
Q
Quleaf 已提交
1042 1043
    if save_gif is not None:
        assert type(save_gif) == bool, \
Q
Quleaf 已提交
1044
            'the type of "save_gif" should be "bool".'
Q
Quleaf 已提交
1045 1046 1047
    if save_gif:
        if filename is not None:
            assert type(filename) == str, \
Q
Quleaf 已提交
1048
                'the type of "filename" should be "str".'
Q
Quleaf 已提交
1049
            other, ext = os.path.splitext(filename)
Q
Quleaf 已提交
1050 1051
            assert ext == '.gif', 'The suffix of the file name must be "gif".'
            # If it does not exist, create a folder
Q
Quleaf 已提交
1052 1053 1054 1055 1056
            path, file = os.path.split(filename)
            if not os.path.exists(path):
                os.makedirs(path)
    if view_angle is not None:
        assert type(view_angle) == list or type(view_angle) == tuple, \
Q
Quleaf 已提交
1057
            'the type of "view_angle" should be "list" or "tuple".'
Q
Quleaf 已提交
1058 1059
        for i in range(2):
            assert type(view_angle[i]) == int, \
Q
Quleaf 已提交
1060
                'the type of "view_angle[0]" and "view_angle[1]" should be "int".'
Q
Quleaf 已提交
1061 1062
    if view_dist is not None:
        assert type(view_dist) == int, \
Q
Quleaf 已提交
1063
            'the type of "view_dist" should be "int".'
Q
Quleaf 已提交
1064 1065 1066 1067 1068 1069 1070


def __density_matrix_convert_to_bloch_vector(density_matrix):
    r"""该函数将密度矩阵转化为bloch球面上的坐标

    Args:
        density_matrix (numpy.ndarray): 输入的密度矩阵
Q
Quleaf 已提交
1071

Q
Quleaf 已提交
1072
    Returns:
Q
Quleaf 已提交
1073
        bloch_vector (numpy.ndarray): 存储bloch向量的 x,y,z 坐标,向量的模长,向量的颜色
Q
Quleaf 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    """

    # Pauli Matrix
    pauli_x = np.array([[0, 1], [1, 0]])
    pauli_y = np.array([[0, -1j], [1j, 0]])
    pauli_z = np.array([[1, 0], [0, -1]])

    # Convert a density matrix to a Bloch vector.
    ax = np.trace(np.dot(density_matrix, pauli_x)).real
    ay = np.trace(np.dot(density_matrix, pauli_y)).real
    az = np.trace(np.dot(density_matrix, pauli_z)).real

    # Calc the length of bloch vector
    length = ax ** 2 + ay ** 2 + az ** 2
    length = sqrt(length)
    if length > 1.0:
        length = 1.0

    # Calc the color of bloch vector, the value of the color is proportional to the length
    color = length

    bloch_vector = [ax, ay, az, length, color]

    # You must use an array, which is followed by slicing and taking a column
    bloch_vector = np.array(bloch_vector)

    return bloch_vector


def __plot_bloch_sphere(
        ax,
        bloch_vectors=None,
        show_arrow=False,
        clear_plt=True,
        rotating_angle_list=None,
        view_angle=None,
Q
Quleaf 已提交
1110 1111
        view_dist=None,
        set_color=None
Q
Quleaf 已提交
1112 1113 1114 1115 1116
):
    r"""将 Bloch 向量展示在 Bloch 球面上

    Args:
        ax (Axes3D(fig)): 画布的句柄
Q
Quleaf 已提交
1117 1118 1119
        bloch_vectors (numpy.ndarray): 存储bloch向量的 x,y,z 坐标,向量的模长,向量的颜色
        show_arrow (bool): 是否展示向量的箭头,默认为 False
        clear_plt (bool): 是否要清空画布,默认为 True,每次画图的时候清空画布再画图
Q
Quleaf 已提交
1120
        rotating_angle_list (list): 旋转角度的列表,用于展示旋转轨迹
Q
Quleaf 已提交
1121 1122 1123 1124
        view_angle (list): 视图的角度,
            第一个元素为关于xy平面的夹角[0-360],第二个元素为关于xz平面的夹角[0-360], 默认为 (30, 45)
        view_dist (int): 视图的距离,默认为 7
        set_color (str): 设置指定的颜色,请查阅cmap表,默认为 "红-黑-根据向量的模长渐变" 颜色方案
Q
Quleaf 已提交
1125 1126 1127
    """
    # Assign a value to an empty variable
    if view_angle is None:
Q
Quleaf 已提交
1128
        view_angle = (30, 45)
Q
Quleaf 已提交
1129 1130 1131
    if view_dist is None:
        view_dist = 7
    # Define my_color
Q
Quleaf 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    if set_color is None:
        color = 'rainbow'
        black_code = '#000000'
        red_code = '#F24A29'
        if bloch_vectors is not None:
            black_to_red = mplcolors.LinearSegmentedColormap.from_list(
                'my_color',
                [(0, black_code), (1, red_code)],
                N=len(bloch_vectors[:, 4])
            )
            map_vir = plt.get_cmap(black_to_red)
            color = map_vir(bloch_vectors[:, 4])
    else:
        color = set_color
Q
Quleaf 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    # Set the view angle and view distance
    ax.view_init(view_angle[0], view_angle[1])
    ax.dist = view_dist

    # Draw the general frame
    def draw_general_frame():

        # Do not show the grid and original axes
        ax.grid(False)
        ax.set_axis_off()
        ax.view_init(view_angle[0], view_angle[1])
        ax.dist = view_dist

        # Set the lower limit and upper limit of each axis
        # To make the bloch_ball look less flat, the default is relatively flat
        ax.set_xlim3d(xmin=-1.5, xmax=1.5)
        ax.set_ylim3d(ymin=-1.5, ymax=1.5)
        ax.set_zlim3d(zmin=-1, zmax=1.3)

        # Draw a new axes
        coordinate_start_x, coordinate_start_y, coordinate_start_z = \
            np.array([[-1.5, 0, 0], [0, -1.5, 0], [0, 0, -1.5]])
        coordinate_end_x, coordinate_end_y, coordinate_end_z = \
            np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3]])
        ax.quiver(
            coordinate_start_x, coordinate_start_y, coordinate_start_z,
            coordinate_end_x, coordinate_end_y, coordinate_end_z,
            arrow_length_ratio=0.03, color="black", linewidth=0.5
        )
        ax.text(0, 0, 1.7, r"|0⟩", color="black", fontsize=16)
        ax.text(0, 0, -1.9, r"|1⟩", color="black", fontsize=16)
        ax.text(1.9, 0, 0, r"|+⟩", color="black", fontsize=16)
        ax.text(-1.7, 0, 0, r"|–⟩", color="black", fontsize=16)
        ax.text(0, 1.7, 0, r"|i+⟩", color="black", fontsize=16)
        ax.text(0, -1.9, 0, r"|i–⟩", color="black", fontsize=16)

        # Draw a surface
        horizontal_angle = np.linspace(0, 2 * np.pi, 80)
        vertical_angle = np.linspace(0, np.pi, 80)
        surface_point_x = np.outer(np.cos(horizontal_angle), np.sin(vertical_angle))
        surface_point_y = np.outer(np.sin(horizontal_angle), np.sin(vertical_angle))
        surface_point_z = np.outer(np.ones(np.size(horizontal_angle)), np.cos(vertical_angle))
        ax.plot_surface(
            surface_point_x, surface_point_y, surface_point_z, rstride=1, cstride=1,
            color="black", linewidth=0.05, alpha=0.03
        )

        # Draw circle
        def draw_circle(circle_horizon_angle, circle_vertical_angle, linewidth=0.5, alpha=0.2):
            r = 1
            circle_point_x = r * np.cos(circle_vertical_angle) * np.cos(circle_horizon_angle)
            circle_point_y = r * np.cos(circle_vertical_angle) * np.sin(circle_horizon_angle)
            circle_point_z = r * np.sin(circle_vertical_angle)
            ax.plot(
                circle_point_x, circle_point_y, circle_point_z,
                color="black", linewidth=linewidth, alpha=alpha
            )

        # draw longitude and latitude
        def draw_longitude_and_latitude():
            # Draw longitude
            num = 3
            theta = np.linspace(0, 0, 100)
            psi = np.linspace(0, 2 * np.pi, 100)
            for i in range(num):
                theta = theta + np.pi / num
                draw_circle(theta, psi)

            # Draw latitude
            num = 6
            theta = np.linspace(0, 2 * np.pi, 100)
            psi = np.linspace(-np.pi / 2, -np.pi / 2, 100)
            for i in range(num):
                psi = psi + np.pi / num
                draw_circle(theta, psi)

            # Draw equator
            theta = np.linspace(0, 2 * np.pi, 100)
            psi = np.linspace(0, 0, 100)
            draw_circle(theta, psi, linewidth=0.5, alpha=0.2)

            # Draw prime meridian
            theta = np.linspace(0, 0, 100)
            psi = np.linspace(0, 2 * np.pi, 100)
            draw_circle(theta, psi, linewidth=0.5, alpha=0.2)

        # If the number of data points exceeds 20, no longitude and latitude lines will be drawn.
        if bloch_vectors is not None and len(bloch_vectors) < 52:
            draw_longitude_and_latitude()
        elif bloch_vectors is None:
            draw_longitude_and_latitude()

        # Draw three invisible points
        invisible_points = np.array([[0.03440399, 0.30279721, 0.95243384],
                                     [0.70776026, 0.57712403, 0.40743499],
                                     [0.46991358, -0.63717908, 0.61088792]])
        ax.scatter(
            invisible_points[:, 0], invisible_points[:, 1], invisible_points[:, 2],
            c='w', alpha=0.01
        )

    # clean plt
    if clear_plt:
        ax.cla()
        draw_general_frame()

    # Draw the data points
    if bloch_vectors is not None:
        ax.scatter(
Q
Quleaf 已提交
1256
            bloch_vectors[:, 0], bloch_vectors[:, 1], bloch_vectors[:, 2], c=color, alpha=1.0
Q
Quleaf 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        )

    # if show the rotating angle
    if rotating_angle_list is not None:
        bloch_num = len(bloch_vectors)
        rotating_angle_theta, rotating_angle_phi, rotating_angle_lam = rotating_angle_list[bloch_num - 1]
        rotating_angle_theta = round(rotating_angle_theta, 6)
        rotating_angle_phi = round(rotating_angle_phi, 6)
        rotating_angle_lam = round(rotating_angle_lam, 6)

        # Shown at the top right of the perspective
        display_text_angle = [-(view_angle[0] - 10), (view_angle[1] + 10)]
        text_point_x = 2 * np.cos(display_text_angle[0]) * np.cos(display_text_angle[1])
        text_point_y = 2 * np.cos(display_text_angle[0]) * np.sin(-display_text_angle[1])
        text_point_z = 2 * np.sin(-display_text_angle[0])
        ax.text(text_point_x, text_point_y, text_point_z, r'$\theta=' + str(rotating_angle_theta) + r'$',
                color="black", fontsize=14)
        ax.text(text_point_x, text_point_y, text_point_z - 0.1, r'$\phi=' + str(rotating_angle_phi) + r'$',
                color="black", fontsize=14)
        ax.text(text_point_x, text_point_y, text_point_z - 0.2, r'$\lambda=' + str(rotating_angle_lam) + r'$',
                color="black", fontsize=14)

    # If show the bloch_vector
    if show_arrow:
        ax.quiver(
            0, 0, 0, bloch_vectors[:, 0], bloch_vectors[:, 1], bloch_vectors[:, 2],
Q
Quleaf 已提交
1283
            arrow_length_ratio=0.05, color=color, alpha=1.0
Q
Quleaf 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292
        )


def plot_state_in_bloch_sphere(
        state,
        show_arrow=False,
        save_gif=False,
        filename=None,
        view_angle=None,
Q
Quleaf 已提交
1293 1294
        view_dist=None,
        set_color=None
Q
Quleaf 已提交
1295 1296 1297 1298 1299 1300 1301 1302
):
    r"""将输入的量子态展示在 Bloch 球面上

    Args:
        state (list(numpy.ndarray or paddle.Tensor)): 输入的量子态列表,可以支持态矢量和密度矩阵
        show_arrow (bool): 是否展示向量的箭头,默认为 ``False``
        save_gif (bool): 是否存储 gif 动图,默认为 ``False``
        filename (str): 存储的 gif 动图的名字
Q
Quleaf 已提交
1303 1304
        view_angle (list or tuple): 视图的角度,
            第一个元素为关于 xy 平面的夹角 [0-360],第二个元素为关于 xz 平面的夹角 [0-360], 默认为 ``(30, 45)``
Q
Quleaf 已提交
1305
        view_dist (int): 视图的距离,默认为 7
Q
Quleaf 已提交
1306
        set_color (str): 若要设置指定的颜色,请查阅 ``cmap`` 表。默认为红色到黑色的渐变颜色
Q
Quleaf 已提交
1307 1308 1309 1310 1311
    """
    # Check input data
    __input_args_dtype_check(show_arrow, save_gif, filename, view_angle, view_dist)

    assert type(state) == list or type(state) == paddle.Tensor or type(state) == np.ndarray, \
Q
Quleaf 已提交
1312
        'the type of "state" must be "list" or "paddle.Tensor" or "np.ndarray".'
Q
Quleaf 已提交
1313 1314 1315
    if type(state) == paddle.Tensor or type(state) == np.ndarray:
        state = [state]
    state_len = len(state)
Q
Quleaf 已提交
1316
    assert state_len >= 1, '"state" is NULL.'
Q
Quleaf 已提交
1317 1318
    for i in range(state_len):
        assert type(state[i]) == paddle.Tensor or type(state[i]) == np.ndarray, \
Q
Quleaf 已提交
1319 1320 1321 1322
            'the type of "state[i]" should be "paddle.Tensor" or "numpy.ndarray".'
    if set_color is not None:
        assert type(set_color) == str, \
            'the type of "set_color" should be "str".'
Q
Quleaf 已提交
1323 1324 1325 1326 1327

    # Assign a value to an empty variable
    if filename is None:
        filename = 'state_in_bloch_sphere.gif'
    if view_angle is None:
Q
Quleaf 已提交
1328
        view_angle = (30, 45)
Q
Quleaf 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    if view_dist is None:
        view_dist = 7

    # Convert Tensor to numpy
    for i in range(state_len):
        if type(state[i]) == paddle.Tensor:
            state[i] = state[i].numpy()

    # Convert state_vector to density_matrix
    for i in range(state_len):
        if state[i].size == 2:
            state_vector = state[i]
            state[i] = np.outer(state_vector, np.conj(state_vector))

    # Calc the bloch_vectors
    bloch_vector_list = []
    for i in range(state_len):
        bloch_vector_tmp = __density_matrix_convert_to_bloch_vector(state[i])
        bloch_vector_list.append(bloch_vector_tmp)

    # List must be converted to array for slicing.
    bloch_vectors = np.array(bloch_vector_list)

    # A update function for animation class
    def update(frame):
        view_rotating_angle = 5
Q
Quleaf 已提交
1355 1356 1357 1358 1359
        new_view_angle = [view_angle[0], view_angle[1] + view_rotating_angle * frame]
        __plot_bloch_sphere(
            ax, bloch_vectors, show_arrow, clear_plt=True,
            view_angle=new_view_angle, view_dist=view_dist, set_color=set_color
        )
Q
Quleaf 已提交
1360 1361 1362

    # Dynamic update and save
    if save_gif:
Q
Quleaf 已提交
1363 1364 1365 1366 1367 1368
        # Helper function to plot vectors on a sphere.
        fig = plt.figure(figsize=(8, 8), dpi=100)
        fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
        ax = fig.add_subplot(111, projection='3d')

        frames_num = 7
Q
Quleaf 已提交
1369
        anim = animation.FuncAnimation(fig, update, frames=frames_num, interval=600, repeat=False)
Q
Quleaf 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        anim.save(filename, dpi=100, writer='pillow')
        # close the plt
        plt.close(fig)

    # Helper function to plot vectors on a sphere.
    fig = plt.figure(figsize=(8, 8), dpi=100)
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
    ax = fig.add_subplot(111, projection='3d')

    __plot_bloch_sphere(
        ax, bloch_vectors, show_arrow, clear_plt=True,
        view_angle=view_angle, view_dist=view_dist, set_color=set_color
    )
Q
Quleaf 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

    plt.show()


def plot_rotation_in_bloch_sphere(
        init_state,
        rotating_angle,
        show_arrow=False,
        save_gif=False,
        filename=None,
        view_angle=None,
Q
Quleaf 已提交
1394 1395
        view_dist=None,
        color_scheme=None,
Q
Quleaf 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404
):
    r"""在 Bloch 球面上刻画从初始量子态开始的旋转轨迹

    Args:
        init_state (numpy.ndarray or paddle.Tensor): 输入的初始量子态,可以支持态矢量和密度矩阵
        rotating_angle (list(float)): 旋转角度 ``[theta, phi, lam]``
        show_arrow (bool): 是否展示向量的箭头,默认为 ``False``
        save_gif (bool): 是否存储 gif 动图,默认为 ``False``
        filename (str): 存储的 gif 动图的名字
Q
Quleaf 已提交
1405 1406
        view_angle (list or tuple): 视图的角度,
            第一个元素为关于 xy 平面的夹角 [0-360],第二个元素为关于 xz 平面的夹角 [0-360], 默认为 ``(30, 45)``
Q
Quleaf 已提交
1407
        view_dist (int): 视图的距离,默认为 7
Q
Quleaf 已提交
1408
        color_scheme (list(str,str,str)): 分别是初始颜色,轨迹颜色,结束颜色。若要设置指定的颜色,请查阅 ``cmap`` 表。默认为红色
Q
Quleaf 已提交
1409 1410 1411 1412 1413 1414 1415
    """
    # Check input data
    __input_args_dtype_check(show_arrow, save_gif, filename, view_angle, view_dist)

    assert type(init_state) == paddle.Tensor or type(init_state) == np.ndarray, \
        'the type of input data should be "paddle.Tensor" or "numpy.ndarray".'
    assert type(rotating_angle) == tuple or type(rotating_angle) == list, \
Q
Quleaf 已提交
1416
        'the type of rotating_angle should be "tuple" or "list".'
Q
Quleaf 已提交
1417 1418 1419 1420 1421
    assert len(rotating_angle) == 3, \
        'the rotating_angle must include [theta=paddle.Tensor, phi=paddle.Tensor, lam=paddle.Tensor].'
    for i in range(3):
        assert type(rotating_angle[i]) == paddle.Tensor or type(rotating_angle[i]) == float, \
            'the rotating_angle must include [theta=paddle.Tensor, phi=paddle.Tensor, lam=paddle.Tensor].'
Q
Quleaf 已提交
1422 1423 1424 1425 1426 1427 1428
    if color_scheme is not None:
        assert type(color_scheme) == list and len(color_scheme) <= 3, \
            'the type of "color_scheme" should be "list" and ' \
            'the length of "color_scheme" should be less than or equal to "3".'
        for i in range(len(color_scheme)):
            assert type(color_scheme[i]) == str, \
                'the type of "color_scheme[i] should be "str".'
Q
Quleaf 已提交
1429 1430 1431 1432

    # Assign a value to an empty variable
    if filename is None:
        filename = 'rotation_in_bloch_sphere.gif'
Q
Quleaf 已提交
1433 1434 1435 1436 1437 1438 1439

    # Assign colors to bloch vectors
    color_list = ['orangered', 'lightsalmon', 'darkred']
    if color_scheme is not None:
        for i in range(len(color_scheme)):
            color_list[i] = color_scheme[i]
    set_init_color, set_trac_color, set_end_color = color_list
Q
Quleaf 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

    theta, phi, lam = rotating_angle

    # Convert Tensor to numpy
    if type(init_state) == paddle.Tensor:
        init_state = init_state.numpy()

    # Convert state_vector to density_matrix
    if init_state.size == 2:
        state_vector = init_state
        init_state = np.outer(state_vector, np.conj(state_vector))

    # Rotating angle
    def rotating_operation(rotating_angle_each):
        gate_matrix = simulator.u_gate_matrix(rotating_angle_each)
        return np.matmul(np.matmul(gate_matrix, init_state), gate_matrix.conj().T)

    # Rotating angle division
    rotating_frame = 50
    rotating_angle_list = []
    state = []
    for i in range(rotating_frame + 1):
        angle_each = [theta / rotating_frame * i, phi / rotating_frame * i, lam / rotating_frame * i]
        rotating_angle_list.append(angle_each)
        state.append(rotating_operation(angle_each))

    state_len = len(state)
    # Calc the bloch_vectors
    bloch_vector_list = []
    for i in range(state_len):
        bloch_vector_tmp = __density_matrix_convert_to_bloch_vector(state[i])
        bloch_vector_list.append(bloch_vector_tmp)

    # List must be converted to array for slicing.
    bloch_vectors = np.array(bloch_vector_list)

    # A update function for animation class
    def update(frame):
Q
Quleaf 已提交
1478 1479
        frame = frame + 2
        if frame <= len(bloch_vectors) - 1:
Q
Quleaf 已提交
1480
            __plot_bloch_sphere(
Q
Quleaf 已提交
1481
                ax, bloch_vectors[1:frame], show_arrow=show_arrow, clear_plt=True,
Q
Quleaf 已提交
1482
                rotating_angle_list=rotating_angle_list,
Q
Quleaf 已提交
1483
                view_angle=view_angle, view_dist=view_dist, set_color=set_trac_color
Q
Quleaf 已提交
1484 1485 1486 1487 1488
            )

            # The starting and ending bloch vector has to be shown
            # show starting vector
            __plot_bloch_sphere(
Q
Quleaf 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497
                ax, bloch_vectors[:1],  show_arrow=True, clear_plt=False,
                view_angle=view_angle, view_dist=view_dist, set_color=set_init_color
            )

        # Show ending vector
        if frame == len(bloch_vectors):
            __plot_bloch_sphere(
                ax, bloch_vectors[frame - 1:frame], show_arrow=True, clear_plt=False,
                view_angle=view_angle, view_dist=view_dist, set_color=set_end_color
Q
Quleaf 已提交
1498 1499 1500
            )

    if save_gif:
Q
Quleaf 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        # Helper function to plot vectors on a sphere.
        fig = plt.figure(figsize=(8, 8), dpi=100)
        fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
        ax = fig.add_subplot(111, projection='3d')

        # Dynamic update and save
        stop_frames = 15
        frames_num = len(bloch_vectors) - 2 + stop_frames
        anim = animation.FuncAnimation(fig, update, frames=frames_num, interval=100, repeat=False)
        anim.save(filename, dpi=100, writer='pillow')
        # close the plt
        plt.close(fig)

    # Helper function to plot vectors on a sphere.
    fig = plt.figure(figsize=(8, 8), dpi=100)
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
    ax = fig.add_subplot(111, projection='3d')

    # Draw the penultimate bloch vector
    update(len(bloch_vectors) - 3)
    # Draw the last bloch vector
    update(len(bloch_vectors) - 2)
Q
Quleaf 已提交
1523 1524

    plt.show()