quanter.py 26.5 KB
Newer Older
F
ftian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
F
ftian 已提交
16
import copy
17
import json
18 19
import logging

F
ftian 已提交
20 21 22 23 24 25
import paddle
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
S
slf12 已提交
26
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
S
slf12 已提交
27
from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass
28 29
from paddle.fluid.contrib.slim.quantization import OutScaleForTrainingPass
from paddle.fluid.contrib.slim.quantization import OutScaleForInferencePass
F
ftian 已提交
30
from paddle.fluid import core
L
Liufang Sang 已提交
31
from paddle.fluid.contrib.slim.quantization import WeightQuantization
F
ftian 已提交
32

33 34 35
from ..common import get_logger
_logger = get_logger(__name__, level=logging.INFO)

S
slf12 已提交
36
WEIGHT_QUANTIZATION_TYPES = [
37
    'abs_max', 'channel_wise_abs_max', 'range_abs_max', 'moving_average_abs_max'
S
slf12 已提交
38
]
39 40
WEIGHT_QUANTIZATION_TYPES_TENSORRT = ['channel_wise_abs_max']

S
slf12 已提交
41 42 43
ACTIVATION_QUANTIZATION_TYPES = [
    'abs_max', 'range_abs_max', 'moving_average_abs_max'
]
44 45 46 47 48

ACTIVATION_QUANTIZATION_TYPES_TENSORRT = [
    'range_abs_max', 'moving_average_abs_max'
]

F
ftian 已提交
49
VALID_DTYPES = ['int8']
50
TRANSFORM_PASS_OP_TYPES = QuantizationTransformPass._supported_quantizable_op_type
51 52
QUANT_DEQUANT_PASS_OP_TYPES = AddQuantDequantPass._supported_quantizable_op_type

53 54 55 56
TENSORRT_OP_TYPES = [
    'mul', 'conv2d', 'pool2d', 'depthwise_conv2d', 'elementwise_add',
    'leaky_relu'
]
F
ftian 已提交
57

58 59
VARS_MAPPING_TABLE = './mapping_table_for_saving_inference_model'

F
ftian 已提交
60
_quant_config_default = {
61 62 63 64
    # weight quantize type, default is 'channel_wise_abs_max'
    'weight_quantize_type': 'channel_wise_abs_max',
    # activation quantize type, default is 'moving_average_abs_max'
    'activation_quantize_type': 'moving_average_abs_max',
F
ftian 已提交
65 66 67 68 69 70 71
    # weight quantize bit num, default is 8
    'weight_bits': 8,
    # activation quantize bit num, default is 8
    'activation_bits': 8,
    # ops of name_scope in not_quant_pattern list, will not be quantized
    'not_quant_pattern': ['skip_quant'],
    # ops of type in quantize_op_types, will be quantized
72
    'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
F
ftian 已提交
73 74 75 76 77 78
    # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
    'dtype': 'int8',
    # window size for 'range_abs_max' quantization. defaulf is 10000
    'window_size': 10000,
    # The decay coefficient of moving average, default is 0.9
    'moving_rate': 0.9,
79 80 81
    # if True, 'quantize_op_types' will be TENSORRT_OP_TYPES
    'for_tensorrt': False,
    # if True, 'quantoze_op_types' will be TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES 
82
    'is_full_quantize': False
F
ftian 已提交
83 84 85
}


86 87 88 89 90 91 92 93 94 95 96 97
def load_dict():
    with open(VARS_MAPPING_TABLE, 'r') as file:
        data = file.read()
        data = json.loads(data)
        return data


def save_dict(table):
    with open(VARS_MAPPING_TABLE, 'w') as file:
        file.write(json.dumps(table))


F
ftian 已提交
98 99
def _parse_configs(user_config):
    """
100
    check if user's configs are valid.
F
ftian 已提交
101
    Args:
102
        user_config(dict): user's config.
F
ftian 已提交
103 104 105 106 107 108 109
    Return:
        configs(dict): final configs will be used.
    """

    configs = copy.deepcopy(_quant_config_default)
    configs.update(user_config)

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    assert isinstance(configs['for_tensorrt'], bool) and isinstance(
        configs['is_full_quantize'],
        bool), "'for_tensorrt' and 'is_full_quantize' must both be bool'"

    # check if configs is valid
    if configs['for_tensorrt']:
        weight_types = WEIGHT_QUANTIZATION_TYPES_TENSORRT
        activation_types = ACTIVATION_QUANTIZATION_TYPES_TENSORRT
        platform = 'TensorRT'
    else:
        weight_types = WEIGHT_QUANTIZATION_TYPES
        activation_types = WEIGHT_QUANTIZATION_TYPES
        platform = 'PaddleLite'
    assert configs['weight_quantize_type'] in weight_types, \
        "Unknown weight_quantize_type: {}. {} only supports {} ".format(configs['weight_quantize_type'],
                platform, weight_types)
F
ftian 已提交
126

127 128 129
    assert configs['activation_quantize_type'] in activation_types, \
        "Unknown activation_quantize_type: {}. {} only supports {}".format(configs['activation_quantize_type'],
                platform, activation_types)
F
ftian 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142

    assert isinstance(configs['weight_bits'], int), \
        "weight_bits must be int value."

    assert (configs['weight_bits'] >= 1 and configs['weight_bits'] <= 16), \
        "weight_bits should be between 1 and 16."

    assert isinstance(configs['activation_bits'], int), \
        "activation_bits must be int value."

    assert (configs['activation_bits'] >= 1 and configs['activation_bits'] <= 16), \
        "activation_bits should be between 1 and 16."

143 144
    assert isinstance(configs['not_quant_pattern'], (list, str)), \
        "not_quant_pattern must be list or str"
F
ftian 已提交
145 146 147 148

    assert isinstance(configs['quantize_op_types'], list), \
        "quantize_op_types must be a list"

149 150 151 152 153 154 155 156 157 158 159 160
    if configs['for_tensorrt']:
        configs['quantize_op_types'] = TENSORRT_OP_TYPES
    elif configs['is_full_quantize']:
        configs[
            'quantize_op_types'] = TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES
    else:
        for op_type in configs['quantize_op_types']:
            assert (op_type in QUANT_DEQUANT_PASS_OP_TYPES) or (
                op_type in TRANSFORM_PASS_OP_TYPES), "{} is not support, \
                        now support op types are {}".format(
                    op_type,
                    TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES)
S
slf12 已提交
161

F
ftian 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    assert isinstance(configs['dtype'], str), \
        "dtype must be a str."

    assert (configs['dtype'] in VALID_DTYPES), \
        "dtype can only be " + " ".join(VALID_DTYPES)

    assert isinstance(configs['window_size'], int), \
        "window_size must be int value, window size for 'range_abs_max' quantization, default is 10000."

    assert isinstance(configs['moving_rate'], float), \
        "moving_rate must be float value, The decay coefficient of moving average, default is 0.9."

    return configs


177 178 179 180 181 182 183 184 185 186
def quant_aware(program,
                place,
                config=None,
                scope=None,
                for_test=False,
                weight_quantize_func=None,
                act_quantize_func=None,
                weight_preprocess_func=None,
                act_preprocess_func=None,
                optimizer_func=None,
Y
yukavio 已提交
187 188
                executor=None,
                return_program=False):
189 190 191
    """Add quantization  and dequantization operators to "program" 
    for quantization training or testing.

F
ftian 已提交
192
    Args:
B
Bai Yifan 已提交
193 194
        program(paddle.static.Program): training or testing ``program``.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents 
195 196 197
            the executor run on which device.
        config(dict, optional): configs for quantization. if None, will use default config. 
            Default: None.
B
Bai Yifan 已提交
198
        scope(paddle.static.Scope): Scope records the mapping between variable names and variables, 
199
            similar to brackets in programming languages. Usually users can use 
B
Bai Yifan 已提交
200
            `paddle.static.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.              When ``None`` will use `paddle.static.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
201 202
        for_test(bool): If the 'program' parameter is a test program, this parameter should be set to ``True``. 
            Otherwise, set to ``False``.Default: False
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
       weight_quantize_func(function): Function that defines how to quantize weight. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization function and dequantization function, that is, the function's input
                is non-quantized weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'.
                Default is None.
        act_quantize_func(function): Function that defines how to quantize activation. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization and dequantization process, that is, the function's input
                is non-quantized activation and function returns dequantized activation. If None, will use 
                quantization op defined by 'activation_quantize_type'.
                Default is None.
        weight_preprocess_func(function): Function that defines how to preprocess weight before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized weight and function returns processed weight to be quantized. If None, the weight will
                be quantized directly.
                Default is None.
        act_preprocess_func(function): Function that defines how to preprocess activation before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized activation and function returns processed activation to be quantized. If None, the activation will
                be quantized directly.
                Default is None.
        optimizer_func(function): Fuction return a optimizer. When 'is_test' is False and user want to use self-defined 
            quantization function and preprocess function, this function must be set. Default is None.
B
Bai Yifan 已提交
227
        exe(paddle.static.Executor): If user want to use self-defined quantization function and preprocess function, exe must be set for
228
                initialization. Default is None.
Y
yukavio 已提交
229 230
        return_program(bool): If user want return value is a Program rather than Compiled Program, This argument should be set True.
                Default is False.
231
    Returns:
B
Bai Yifan 已提交
232
        paddle.static.CompiledProgram | paddle.static.Program: Program with quantization and dequantization ``operators``
F
ftian 已提交
233 234
    """

B
Bai Yifan 已提交
235
    scope = paddle.static.global_scope() if not scope else scope
236 237 238 239 240 241
    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("quant_aware config {}".format(config))
F
ftian 已提交
242 243 244

    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

S
slf12 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    transform_pass_ops = []
    quant_dequant_ops = []
    for op_type in config['quantize_op_types']:
        if op_type in TRANSFORM_PASS_OP_TYPES:
            transform_pass_ops.append(op_type)
        elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
            quant_dequant_ops.append(op_type)
    if len(transform_pass_ops) > 0:
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            weight_bits=config['weight_bits'],
            activation_bits=config['activation_bits'],
            activation_quantize_type=config['activation_quantize_type'],
            weight_quantize_type=config['weight_quantize_type'],
            window_size=config['window_size'],
            moving_rate=config['moving_rate'],
            quantizable_op_type=transform_pass_ops,
263 264 265 266 267 268 269
            skip_pattern=config['not_quant_pattern'],
            weight_quantize_func=weight_quantize_func,
            act_quantize_func=act_quantize_func,
            weight_preprocess_func=weight_preprocess_func,
            act_preprocess_func=act_preprocess_func,
            optimizer_func=optimizer_func,
            executor=executor)
S
slf12 已提交
270 271 272 273 274 275 276 277 278 279 280 281

        transform_pass.apply(main_graph)

    if len(quant_dequant_ops) > 0:
        quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            moving_rate=config['moving_rate'],
            quant_bits=config['activation_bits'],
            skip_pattern=config['not_quant_pattern'],
            quantizable_op_type=quant_dequant_ops)
        quant_dequant_pass.apply(main_graph)
F
ftian 已提交
282

283 284 285 286
    out_scale_training_pass = OutScaleForTrainingPass(
        scope=scope, place=place, moving_rate=config['moving_rate'])
    out_scale_training_pass.apply(main_graph)

287 288 289 290 291 292 293 294 295
    if (weight_preprocess_func is not None or
            act_preprocess_func is not None) and not for_test:
        _logger.info(
            "When a preprocess_func is used in quant_aware, Need to save a mapping table to match variable names in the convert phase."
        )
        _logger.info("The mapping table is saved as '{}'.".format(
            VARS_MAPPING_TABLE))
        save_dict(main_graph.out_node_mapping_table)

Y
yukavio 已提交
296
    if for_test or return_program:
F
ftian 已提交
297 298
        quant_program = main_graph.to_program()
    else:
B
Bai Yifan 已提交
299
        quant_program = paddle.static.CompiledProgram(main_graph.graph)
F
ftian 已提交
300 301 302
    return quant_program


303 304 305 306 307 308 309 310 311 312 313 314 315
def quant_post_static(
        executor,
        model_dir,
        quantize_model_path,
        batch_generator=None,
        sample_generator=None,
        model_filename=None,
        params_filename=None,
        save_model_filename='__model__',
        save_params_filename='__params__',
        batch_size=16,
        batch_nums=None,
        scope=None,
X
XGZhang 已提交
316 317 318
        algo='hist',
        hist_percent=0.9999,
        bias_correction=False,
319 320 321 322 323 324
        quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
        is_full_quantize=False,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='range_abs_max',
        weight_quantize_type='channel_wise_abs_max',
325
        optimize_model=False,
326 327
        is_use_cache_file=False,
        cache_dir="./temp_post_training"):
F
ftian 已提交
328
    """
329 330 331 332
    The function utilizes static post training quantization method to
    quantize the fp32 model. It uses calibrate data to calculate the
    scale factor of quantized variables, and inserts fake quantization
    and dequantization operators to obtain the quantized model.
S
slf12 已提交
333

F
ftian 已提交
334
    Args:
B
Bai Yifan 已提交
335
        executor(paddle.static.Executor): The executor to load, run and save the 
S
slf12 已提交
336
            quantized model.
S
slf12 已提交
337
        model_dir(str): The path of fp32 model that will be quantized, and 
B
Bai Yifan 已提交
338
            the model and params that saved by ``paddle.static.io.save_inference_model`` 
S
slf12 已提交
339 340
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
B
Bai Yifan 已提交
341
            ``paddle.static.io.save_inference_model``.
342 343 344 345
        batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. For sample_generator and batch_generator, only one
                can be set. Beisdes, batch_generator supports lod tensor.
S
slf12 已提交
346 347
        sample_generator(Python Generator): The sample generator provides 
            calibrate data for DataLoader, and it only returns a sample every time.
S
slf12 已提交
348
        model_filename(str, optional): The name of model file. If parameters 
349
            are saved in separate files, set it as 'None'. Default: 'None'.
S
slf12 已提交
350
        params_filename(str, optional): The name of params file.
S
slf12 已提交
351 352
                When all parameters are saved in a single file, set it 
                as filename. If parameters are saved in separate files, 
353
                set it as 'None'. Default : 'None'.
354 355 356
        save_model_filename(str): The name of model file to save the quantized inference program.  Default: '__model__'.
        save_params_filename(str): The name of file to save all related parameters. 
                If it is set None, parameters will be saved in separate files. Default: '__params__'.
S
slf12 已提交
357
        batch_size(int, optional): The batch size of DataLoader, default is 16.
S
slf12 已提交
358
        batch_nums(int, optional): If batch_nums is not None, the number of calibrate 
S
slf12 已提交
359 360
                        data is 'batch_size*batch_nums'. If batch_nums is None, use all data
                        generated by sample_generator  as calibrate data.
B
Bai Yifan 已提交
361 362
        scope(paddle.static.Scope, optional): The scope to run program, use it to load 
                        and save variables. If scope is None, will use paddle.static.global_scope().
X
XGZhang 已提交
363 364 365 366 367 368 369 370 371
        algo(str, optional): If algo='KL', use KL-divergenc method to 
                        get the scale factor. If algo='hist', use the hist_percent of histogram 
                        to get the scale factor. If algo='mse', search for the best scale factor which
                        makes the mse loss minimal. Use one batch of data for mse is enough. If 
                        algo='avg', use the average of abs_max values  to get the scale factor. If 
                        algo='abs_max', use abs_max method to get the scale factor. Default: 'hist'.
        hist_percent(float, optional): The percentile of histogram for algo hist.Default:0.9999.
        bias_correction(bool, optional): Bias correction method of https://arxiv.org/abs/1810.05723.
                        Default: False.
S
slf12 已提交
372
        quantizable_op_type(list[str], optional): The list of op types
373
                        that will be quantized. Default: ["conv2d", "depthwise_conv2d", 
S
slf12 已提交
374
                        "mul"].
L
Liufang Sang 已提交
375 376
        weight_bits(int, optional): quantization bit number for weights.
        activation_bits(int): quantization bit number for activation.
377 378 379 380 381 382 383 384 385
	activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This parameter only specifies the fake ops in quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. If it
                is 'abs_max', the scale will not be saved in fake ops.
        weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. Compared to 'abs_max',
                the model accuracy is usually higher when using 'channel_wise_abs_max'.
386 387
        is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
                        If False, only apply quantization to the input quantizable_op_type. Default is False.
388 389 390 391 392
        optimize_model(bool, optional): If set optimize_model as True, it applies some 
                passes to optimize the model before quantization. So far, the place of
                executor must be cpu it supports fusing batch_norm into convs.
        is_use_cache_file(bool): This param is deprecated.
        cache_dir(str): This param is deprecated.
393
    
S
slf12 已提交
394 395
    Returns:
        None
F
ftian 已提交
396
    """
S
slf12 已提交
397
    post_training_quantization = PostTrainingQuantization(
S
slf12 已提交
398 399
        executor=executor,
        sample_generator=sample_generator,
400
        batch_generator=batch_generator,
S
slf12 已提交
401 402 403 404 405 406 407
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename,
        batch_size=batch_size,
        batch_nums=batch_nums,
        scope=scope,
        algo=algo,
X
XGZhang 已提交
408 409
        hist_percent=hist_percent,
        bias_correction=bias_correction,
S
slf12 已提交
410
        quantizable_op_type=quantizable_op_type,
411
        is_full_quantize=is_full_quantize,
L
Liufang Sang 已提交
412 413
        weight_bits=weight_bits,
        activation_bits=activation_bits,
414 415
        activation_quantize_type=activation_quantize_type,
        weight_quantize_type=weight_quantize_type,
416
        optimize_model=optimize_model)
S
slf12 已提交
417
    post_training_quantization.quantize()
418 419 420 421
    post_training_quantization.save_quantized_model(
        quantize_model_path,
        model_filename=save_model_filename,
        params_filename=save_params_filename)
F
ftian 已提交
422

423

424 425 426 427 428
# We have changed the quant_post to quant_post_static.
# For compatibility, we keep quant_post api for now, and it will be
# deprecated in the future.
quant_post = quant_post_static

F
ftian 已提交
429

430
def convert(program, place, config=None, scope=None, save_int8=False):
F
ftian 已提交
431
    """
432 433
    convert quantized and well-trained ``program`` to final  quantized
    ``program``that can be used to  save ``inference model``.
434
    
F
ftian 已提交
435
    Args:
B
Bai Yifan 已提交
436 437
        program(paddle.static.Program): quantized and well-trained ``test program``.
        place(paddle.CPUPlace or paddle.CUDAPlace): This parameter represents
438 439 440 441
                the executor run on which device.
        config(dict, optional): configs for convert. if set None, will use
                default config. It must be same with config that used in
                'quant_aware'. Default is None.
B
Bai Yifan 已提交
442
        scope(paddle.static.Scope, optional):  Scope records the mapping between
443 444
                variable names and variables, similar to brackets in
                programming languages. Usually users can use
B
Bai Yifan 已提交
445
                `paddle.static.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.
446
                When ``None`` will use 
B
Bai Yifan 已提交
447
                `paddle.static.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_
448 449 450 451
                . Default: ``None``.
        save_int8: Whether to return ``program`` which model parameters'
                dtype is ``int8``. This parameter can only be used to
                get model size. Default: ``False``.
452 453 454

    Returns:
        Tuple : freezed program which can be used for inference.
B
Bai Yifan 已提交
455 456 457
                when ``save_int8`` is False, return ``freezed_program(paddle.static.Program)``.
                when ``save_int8`` is True, return ``freezed_program(paddle.static.Program)``
                and ``freezed_program_int8(paddle.static.Program)``
F
ftian 已提交
458
    """
B
Bai Yifan 已提交
459
    scope = paddle.static.global_scope() if not scope else scope
460 461 462 463 464 465 466

    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("convert config {}".format(config))
F
ftian 已提交
467 468
    test_graph = IrGraph(core.Graph(program.desc), for_test=True)

469 470 471
    out_scale_infer_pass = OutScaleForInferencePass(scope=scope)
    out_scale_infer_pass.apply(test_graph)

F
ftian 已提交
472 473 474 475 476
    # Freeze the graph after training by adjusting the quantize
    # operators' order for the inference.
    freeze_pass = QuantizationFreezePass(
        scope=scope,
        place=place,
477 478
        weight_bits=config['weight_bits'],
        activation_bits=config['activation_bits'],
479 480
        weight_quantize_type=config['weight_quantize_type'])

481 482 483
    if os.path.exists(VARS_MAPPING_TABLE):
        test_graph.out_node_mapping_table = load_dict()

F
ftian 已提交
484 485 486 487
    freeze_pass.apply(test_graph)
    freezed_program = test_graph.to_program()

    if save_int8:
488
        convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place)
F
ftian 已提交
489 490 491 492 493
        convert_int8_pass.apply(test_graph)
        freezed_program_int8 = test_graph.to_program()
        return freezed_program, freezed_program_int8
    else:
        return freezed_program
L
Liufang Sang 已提交
494 495


496
def quant_post_dynamic(model_dir,
497 498 499 500 501 502 503 504
                       save_model_dir,
                       model_filename=None,
                       params_filename=None,
                       save_model_filename=None,
                       save_params_filename=None,
                       quantizable_op_type=["conv2d", "mul"],
                       weight_bits=8,
                       generate_test_model=False):
L
Liufang Sang 已提交
505
    '''
506 507 508 509 510 511 512
    The function utilizes static post training quantization method to
    quantize the fp32 model. In details, it quantizes the weight of some
    ops from float32 to int8/16. For the quantized model, there are two
    kinds of calculation method in the reference stage. Firstly, the
    quantized weight will be dequantized to float32, and then apply the
    float32 calculation. Secondly, collect the quantized scales of the
    inputs, and then apply the int8 calculation.
L
Liufang Sang 已提交
513 514 515
        
    Args:
        model_dir(str): The path of the fp32 model that will be quantized,
516
                and the model and params files are under the path.
L
Liufang Sang 已提交
517
        save_model_dir(str): The path to save the quantized model.
518 519 520 521 522 523 524 525
        model_filename(str, optional): The name of file used to load the
                inference program. If it is None, the default filename
                '__model__' will be used. Default is 'None'.
        params_filename(str, optional): The name of file used to load all
                parameters. When all parameters were saved in a single
                binary file, set it as the real filename. If parameters
                were saved in separate files, set it as 'None'. Default is
                'None'.
L
Liufang Sang 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        save_model_dir(str): The path used to save the quantized model.
        save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
        save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
        quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d", "depthwise_conv2d", "mul"].
        weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
        generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
    '''

    weight_quant = WeightQuantization(
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename)
550

L
Liufang Sang 已提交
551 552 553 554 555 556 557
    weight_quant.quantize_weight_to_int(
        save_model_dir=save_model_dir,
        save_model_filename=save_model_filename,
        save_params_filename=save_params_filename,
        quantizable_op_type=quantizable_op_type,
        weight_bits=weight_bits,
        generate_test_model=generate_test_model)
558 559 560 561 562


# We have changed the quant_post_only_weight to quant_post_dynamic.
# For compatibility, we keep quant_post_only_weight api for now,
# and it will be deprecated in the future.
563
quant_post_only_weight = quant_post_dynamic