quanter.py 25.6 KB
Newer Older
F
ftian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
F
ftian 已提交
16
import copy
17
import json
18 19
import logging

F
ftian 已提交
20 21 22 23 24 25 26
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
S
slf12 已提交
27
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
S
slf12 已提交
28
from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass
29 30
from paddle.fluid.contrib.slim.quantization import OutScaleForTrainingPass
from paddle.fluid.contrib.slim.quantization import OutScaleForInferencePass
F
ftian 已提交
31
from paddle.fluid import core
L
Liufang Sang 已提交
32
from paddle.fluid.contrib.slim.quantization import WeightQuantization
F
ftian 已提交
33

34 35 36
from ..common import get_logger
_logger = get_logger(__name__, level=logging.INFO)

S
slf12 已提交
37
WEIGHT_QUANTIZATION_TYPES = [
38
    'abs_max', 'channel_wise_abs_max', 'range_abs_max', 'moving_average_abs_max'
S
slf12 已提交
39
]
40 41
WEIGHT_QUANTIZATION_TYPES_TENSORRT = ['channel_wise_abs_max']

S
slf12 已提交
42 43 44
ACTIVATION_QUANTIZATION_TYPES = [
    'abs_max', 'range_abs_max', 'moving_average_abs_max'
]
45 46 47 48 49

ACTIVATION_QUANTIZATION_TYPES_TENSORRT = [
    'range_abs_max', 'moving_average_abs_max'
]

F
ftian 已提交
50
VALID_DTYPES = ['int8']
51
TRANSFORM_PASS_OP_TYPES = QuantizationTransformPass._supported_quantizable_op_type
52 53
QUANT_DEQUANT_PASS_OP_TYPES = AddQuantDequantPass._supported_quantizable_op_type

54 55 56 57
TENSORRT_OP_TYPES = [
    'mul', 'conv2d', 'pool2d', 'depthwise_conv2d', 'elementwise_add',
    'leaky_relu'
]
F
ftian 已提交
58

59 60
VARS_MAPPING_TABLE = './mapping_table_for_saving_inference_model'

F
ftian 已提交
61
_quant_config_default = {
62 63 64 65
    # weight quantize type, default is 'channel_wise_abs_max'
    'weight_quantize_type': 'channel_wise_abs_max',
    # activation quantize type, default is 'moving_average_abs_max'
    'activation_quantize_type': 'moving_average_abs_max',
F
ftian 已提交
66 67 68 69 70 71 72
    # weight quantize bit num, default is 8
    'weight_bits': 8,
    # activation quantize bit num, default is 8
    'activation_bits': 8,
    # ops of name_scope in not_quant_pattern list, will not be quantized
    'not_quant_pattern': ['skip_quant'],
    # ops of type in quantize_op_types, will be quantized
73
    'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
F
ftian 已提交
74 75 76 77 78 79
    # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
    'dtype': 'int8',
    # window size for 'range_abs_max' quantization. defaulf is 10000
    'window_size': 10000,
    # The decay coefficient of moving average, default is 0.9
    'moving_rate': 0.9,
80 81 82 83
    # if True, 'quantize_op_types' will be TENSORRT_OP_TYPES
    'for_tensorrt': False,
    # if True, 'quantoze_op_types' will be TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES 
    'is_full_quantize': False
F
ftian 已提交
84 85 86
}


87 88 89 90 91 92 93 94 95 96 97 98
def load_dict():
    with open(VARS_MAPPING_TABLE, 'r') as file:
        data = file.read()
        data = json.loads(data)
        return data


def save_dict(table):
    with open(VARS_MAPPING_TABLE, 'w') as file:
        file.write(json.dumps(table))


F
ftian 已提交
99 100
def _parse_configs(user_config):
    """
101
    check if user's configs are valid.
F
ftian 已提交
102
    Args:
103
        user_config(dict): user's config.
F
ftian 已提交
104 105 106 107 108 109 110
    Return:
        configs(dict): final configs will be used.
    """

    configs = copy.deepcopy(_quant_config_default)
    configs.update(user_config)

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    assert isinstance(configs['for_tensorrt'], bool) and isinstance(
        configs['is_full_quantize'],
        bool), "'for_tensorrt' and 'is_full_quantize' must both be bool'"

    # check if configs is valid
    if configs['for_tensorrt']:
        weight_types = WEIGHT_QUANTIZATION_TYPES_TENSORRT
        activation_types = ACTIVATION_QUANTIZATION_TYPES_TENSORRT
        platform = 'TensorRT'
    else:
        weight_types = WEIGHT_QUANTIZATION_TYPES
        activation_types = WEIGHT_QUANTIZATION_TYPES
        platform = 'PaddleLite'
    assert configs['weight_quantize_type'] in weight_types, \
        "Unknown weight_quantize_type: {}. {} only supports {} ".format(configs['weight_quantize_type'],
                platform, weight_types)
F
ftian 已提交
127

128 129 130
    assert configs['activation_quantize_type'] in activation_types, \
        "Unknown activation_quantize_type: {}. {} only supports {}".format(configs['activation_quantize_type'],
                platform, activation_types)
F
ftian 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143

    assert isinstance(configs['weight_bits'], int), \
        "weight_bits must be int value."

    assert (configs['weight_bits'] >= 1 and configs['weight_bits'] <= 16), \
        "weight_bits should be between 1 and 16."

    assert isinstance(configs['activation_bits'], int), \
        "activation_bits must be int value."

    assert (configs['activation_bits'] >= 1 and configs['activation_bits'] <= 16), \
        "activation_bits should be between 1 and 16."

144 145
    assert isinstance(configs['not_quant_pattern'], (list, str)), \
        "not_quant_pattern must be list or str"
F
ftian 已提交
146 147 148 149

    assert isinstance(configs['quantize_op_types'], list), \
        "quantize_op_types must be a list"

150 151 152 153 154 155 156 157 158 159 160 161
    if configs['for_tensorrt']:
        configs['quantize_op_types'] = TENSORRT_OP_TYPES
    elif configs['is_full_quantize']:
        configs[
            'quantize_op_types'] = TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES
    else:
        for op_type in configs['quantize_op_types']:
            assert (op_type in QUANT_DEQUANT_PASS_OP_TYPES) or (
                op_type in TRANSFORM_PASS_OP_TYPES), "{} is not support, \
                        now support op types are {}".format(
                    op_type,
                    TRANSFORM_PASS_OP_TYPES + QUANT_DEQUANT_PASS_OP_TYPES)
S
slf12 已提交
162

F
ftian 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    assert isinstance(configs['dtype'], str), \
        "dtype must be a str."

    assert (configs['dtype'] in VALID_DTYPES), \
        "dtype can only be " + " ".join(VALID_DTYPES)

    assert isinstance(configs['window_size'], int), \
        "window_size must be int value, window size for 'range_abs_max' quantization, default is 10000."

    assert isinstance(configs['moving_rate'], float), \
        "moving_rate must be float value, The decay coefficient of moving average, default is 0.9."

    return configs


178 179 180 181 182 183 184 185 186 187
def quant_aware(program,
                place,
                config=None,
                scope=None,
                for_test=False,
                weight_quantize_func=None,
                act_quantize_func=None,
                weight_preprocess_func=None,
                act_preprocess_func=None,
                optimizer_func=None,
Y
yukavio 已提交
188 189
                executor=None,
                return_program=False):
190 191 192
    """Add quantization  and dequantization operators to "program" 
    for quantization training or testing.

F
ftian 已提交
193
    Args:
194 195 196 197 198 199 200 201 202 203
        program(fluid.Program): training or testing ``program``.
        place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents 
            the executor run on which device.
        config(dict, optional): configs for quantization. if None, will use default config. 
            Default: None.
        scope(fluid.Scope): Scope records the mapping between variable names and variables, 
            similar to brackets in programming languages. Usually users can use 
            `fluid.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.              When ``None`` will use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . Default: ``None``.
        for_test(bool): If the 'program' parameter is a test program, this parameter should be set to ``True``. 
            Otherwise, set to ``False``.Default: False
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
       weight_quantize_func(function): Function that defines how to quantize weight. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization function and dequantization function, that is, the function's input
                is non-quantized weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'.
                Default is None.
        act_quantize_func(function): Function that defines how to quantize activation. Using this
                can quickly test if user's quantization method works or not. In this function, user should
                both define quantization and dequantization process, that is, the function's input
                is non-quantized activation and function returns dequantized activation. If None, will use 
                quantization op defined by 'activation_quantize_type'.
                Default is None.
        weight_preprocess_func(function): Function that defines how to preprocess weight before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized weight and function returns processed weight to be quantized. If None, the weight will
                be quantized directly.
                Default is None.
        act_preprocess_func(function): Function that defines how to preprocess activation before quantization. Using this
                can quickly test if user's preprocess method works or not. The function's input
                is non-quantized activation and function returns processed activation to be quantized. If None, the activation will
                be quantized directly.
                Default is None.
        optimizer_func(function): Fuction return a optimizer. When 'is_test' is False and user want to use self-defined 
            quantization function and preprocess function, this function must be set. Default is None.
        exe(Fluid.Executor): If user want to use self-defined quantization function and preprocess function, exe must be set for
                initialization. Default is None.
Y
yukavio 已提交
230 231
        return_program(bool): If user want return value is a Program rather than Compiled Program, This argument should be set True.
                Default is False.
232 233
    Returns:
        fluid.CompiledProgram | fluid.Program: Program with quantization and dequantization ``operators``
F
ftian 已提交
234 235 236
    """

    scope = fluid.global_scope() if not scope else scope
237 238 239 240 241 242
    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("quant_aware config {}".format(config))
F
ftian 已提交
243 244 245

    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

S
slf12 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    transform_pass_ops = []
    quant_dequant_ops = []
    for op_type in config['quantize_op_types']:
        if op_type in TRANSFORM_PASS_OP_TYPES:
            transform_pass_ops.append(op_type)
        elif op_type in QUANT_DEQUANT_PASS_OP_TYPES:
            quant_dequant_ops.append(op_type)
    if len(transform_pass_ops) > 0:
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            weight_bits=config['weight_bits'],
            activation_bits=config['activation_bits'],
            activation_quantize_type=config['activation_quantize_type'],
            weight_quantize_type=config['weight_quantize_type'],
            window_size=config['window_size'],
            moving_rate=config['moving_rate'],
            quantizable_op_type=transform_pass_ops,
264 265 266 267 268 269 270
            skip_pattern=config['not_quant_pattern'],
            weight_quantize_func=weight_quantize_func,
            act_quantize_func=act_quantize_func,
            weight_preprocess_func=weight_preprocess_func,
            act_preprocess_func=act_preprocess_func,
            optimizer_func=optimizer_func,
            executor=executor)
S
slf12 已提交
271 272 273 274 275 276 277 278 279 280 281 282

        transform_pass.apply(main_graph)

    if len(quant_dequant_ops) > 0:
        quant_dequant_pass = AddQuantDequantPass(
            scope=scope,
            place=place,
            moving_rate=config['moving_rate'],
            quant_bits=config['activation_bits'],
            skip_pattern=config['not_quant_pattern'],
            quantizable_op_type=quant_dequant_ops)
        quant_dequant_pass.apply(main_graph)
F
ftian 已提交
283

284 285 286 287
    out_scale_training_pass = OutScaleForTrainingPass(
        scope=scope, place=place, moving_rate=config['moving_rate'])
    out_scale_training_pass.apply(main_graph)

288 289 290 291 292 293 294 295 296
    if (weight_preprocess_func is not None or
            act_preprocess_func is not None) and not for_test:
        _logger.info(
            "When a preprocess_func is used in quant_aware, Need to save a mapping table to match variable names in the convert phase."
        )
        _logger.info("The mapping table is saved as '{}'.".format(
            VARS_MAPPING_TABLE))
        save_dict(main_graph.out_node_mapping_table)

Y
yukavio 已提交
297
    if for_test or return_program:
F
ftian 已提交
298 299 300 301 302 303
        quant_program = main_graph.to_program()
    else:
        quant_program = fluid.CompiledProgram(main_graph.graph)
    return quant_program


304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
def quant_post_static(
        executor,
        model_dir,
        quantize_model_path,
        batch_generator=None,
        sample_generator=None,
        model_filename=None,
        params_filename=None,
        save_model_filename='__model__',
        save_params_filename='__params__',
        batch_size=16,
        batch_nums=None,
        scope=None,
        algo='KL',
        quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
        is_full_quantize=False,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='range_abs_max',
        weight_quantize_type='channel_wise_abs_max',
        is_use_cache_file=False,
        cache_dir="./temp_post_training"):
F
ftian 已提交
326
    """
327 328 329 330
    The function utilizes static post training quantization method to
    quantize the fp32 model. It uses calibrate data to calculate the
    scale factor of quantized variables, and inserts fake quantization
    and dequantization operators to obtain the quantized model.
S
slf12 已提交
331

F
ftian 已提交
332
    Args:
S
slf12 已提交
333 334
        executor(fluid.Executor): The executor to load, run and save the 
            quantized model.
S
slf12 已提交
335
        model_dir(str): The path of fp32 model that will be quantized, and 
336
            the model and params that saved by ``fluid.io.save_inference_model`` 
S
slf12 已提交
337 338
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
339
            ``fluid.io.save_inference_model``.
340 341 342 343
        batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. For sample_generator and batch_generator, only one
                can be set. Beisdes, batch_generator supports lod tensor.
S
slf12 已提交
344 345
        sample_generator(Python Generator): The sample generator provides 
            calibrate data for DataLoader, and it only returns a sample every time.
S
slf12 已提交
346
        model_filename(str, optional): The name of model file. If parameters 
347
            are saved in separate files, set it as 'None'. Default: 'None'.
S
slf12 已提交
348
        params_filename(str, optional): The name of params file.
S
slf12 已提交
349 350
                When all parameters are saved in a single file, set it 
                as filename. If parameters are saved in separate files, 
351
                set it as 'None'. Default : 'None'.
352 353 354
        save_model_filename(str): The name of model file to save the quantized inference program.  Default: '__model__'.
        save_params_filename(str): The name of file to save all related parameters. 
                If it is set None, parameters will be saved in separate files. Default: '__params__'.
S
slf12 已提交
355
        batch_size(int, optional): The batch size of DataLoader, default is 16.
S
slf12 已提交
356
        batch_nums(int, optional): If batch_nums is not None, the number of calibrate 
S
slf12 已提交
357 358 359 360
                        data is 'batch_size*batch_nums'. If batch_nums is None, use all data
                        generated by sample_generator  as calibrate data.
        scope(fluid.Scope, optional): The scope to run program, use it to load 
                        and save variables. If scope is None, will use fluid.global_scope().
S
slf12 已提交
361 362
        algo(str, optional): If algo=KL, use KL-divergenc method to 
                        get the more precise scale factor. If algo='direct', use 
363
                        abs_max method to get the scale factor. Default: 'KL'.
S
slf12 已提交
364
        quantizable_op_type(list[str], optional): The list of op types
365
                        that will be quantized. Default: ["conv2d", "depthwise_conv2d", 
S
slf12 已提交
366
                        "mul"].
L
Liufang Sang 已提交
367 368
        weight_bits(int, optional): quantization bit number for weights.
        activation_bits(int): quantization bit number for activation.
369 370 371 372 373 374 375 376 377
	activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This parameter only specifies the fake ops in quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. If it
                is 'abs_max', the scale will not be saved in fake ops.
        weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. Compared to 'abs_max',
                the model accuracy is usually higher when using 'channel_wise_abs_max'.
378 379 380
        is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
                        If False, only apply quantization to the input quantizable_op_type. Default is False.
        is_use_cache_file(bool): If False, all temp data will be saved in memory. If True,
381
                                all temp data will be saved to disk. Defalut: False.
382
        cache_dir(str): When 'is_use_cache_file' is True, temp data will be save in 'cache_dir'. Default is './temp_post_training'.
383
    
S
slf12 已提交
384 385
    Returns:
        None
F
ftian 已提交
386
    """
S
slf12 已提交
387
    post_training_quantization = PostTrainingQuantization(
S
slf12 已提交
388 389
        executor=executor,
        sample_generator=sample_generator,
390
        batch_generator=batch_generator,
S
slf12 已提交
391 392 393 394 395 396 397 398
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename,
        batch_size=batch_size,
        batch_nums=batch_nums,
        scope=scope,
        algo=algo,
        quantizable_op_type=quantizable_op_type,
399
        is_full_quantize=is_full_quantize,
L
Liufang Sang 已提交
400 401
        weight_bits=weight_bits,
        activation_bits=activation_bits,
402 403
        activation_quantize_type=activation_quantize_type,
        weight_quantize_type=weight_quantize_type,
404 405
        is_use_cache_file=is_use_cache_file,
        cache_dir=cache_dir)
S
slf12 已提交
406
    post_training_quantization.quantize()
407 408 409 410
    post_training_quantization.save_quantized_model(
        quantize_model_path,
        model_filename=save_model_filename,
        params_filename=save_params_filename)
F
ftian 已提交
411

412

413 414 415 416 417
# We have changed the quant_post to quant_post_static.
# For compatibility, we keep quant_post api for now, and it will be
# deprecated in the future.
quant_post = quant_post_static

F
ftian 已提交
418

419
def convert(program, place, config=None, scope=None, save_int8=False):
F
ftian 已提交
420
    """
421 422
    convert quantized and well-trained ``program`` to final  quantized
    ``program``that can be used to  save ``inference model``.
423
    
F
ftian 已提交
424
    Args:
425
        program(fluid.Program): quantized and well-trained ``test program``.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents
                the executor run on which device.
        config(dict, optional): configs for convert. if set None, will use
                default config. It must be same with config that used in
                'quant_aware'. Default is None.
        scope(fluid.Scope, optional):  Scope records the mapping between
                variable names and variables, similar to brackets in
                programming languages. Usually users can use
                `fluid.global_scope <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_.
                When ``None`` will use 
                `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_
                . Default: ``None``.
        save_int8: Whether to return ``program`` which model parameters'
                dtype is ``int8``. This parameter can only be used to
                get model size. Default: ``False``.
441 442 443

    Returns:
        Tuple : freezed program which can be used for inference.
444 445 446
                when ``save_int8`` is False, return ``freezed_program(fluid.Program)``.
                when ``save_int8`` is True, return ``freezed_program(fluid.Program)``
                and ``freezed_program_int8(fluid.Program)``
F
ftian 已提交
447
    """
S
slf12 已提交
448
    scope = fluid.global_scope() if not scope else scope
449 450 451 452 453 454 455

    if config is None:
        config = _quant_config_default
    else:
        assert isinstance(config, dict), "config must be dict"
        config = _parse_configs(config)
    _logger.info("convert config {}".format(config))
F
ftian 已提交
456 457
    test_graph = IrGraph(core.Graph(program.desc), for_test=True)

458 459 460
    out_scale_infer_pass = OutScaleForInferencePass(scope=scope)
    out_scale_infer_pass.apply(test_graph)

F
ftian 已提交
461 462 463 464 465
    # Freeze the graph after training by adjusting the quantize
    # operators' order for the inference.
    freeze_pass = QuantizationFreezePass(
        scope=scope,
        place=place,
466 467
        weight_bits=config['weight_bits'],
        activation_bits=config['activation_bits'],
468 469
        weight_quantize_type=config['weight_quantize_type'])

470 471 472
    if os.path.exists(VARS_MAPPING_TABLE):
        test_graph.out_node_mapping_table = load_dict()

F
ftian 已提交
473 474 475 476
    freeze_pass.apply(test_graph)
    freezed_program = test_graph.to_program()

    if save_int8:
477
        convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place)
F
ftian 已提交
478 479 480 481 482
        convert_int8_pass.apply(test_graph)
        freezed_program_int8 = test_graph.to_program()
        return freezed_program, freezed_program_int8
    else:
        return freezed_program
L
Liufang Sang 已提交
483 484


485
def quant_post_dynamic(model_dir,
486 487 488 489 490 491 492 493
                       save_model_dir,
                       model_filename=None,
                       params_filename=None,
                       save_model_filename=None,
                       save_params_filename=None,
                       quantizable_op_type=["conv2d", "mul"],
                       weight_bits=8,
                       generate_test_model=False):
L
Liufang Sang 已提交
494
    '''
495 496 497 498 499 500 501
    The function utilizes static post training quantization method to
    quantize the fp32 model. In details, it quantizes the weight of some
    ops from float32 to int8/16. For the quantized model, there are two
    kinds of calculation method in the reference stage. Firstly, the
    quantized weight will be dequantized to float32, and then apply the
    float32 calculation. Secondly, collect the quantized scales of the
    inputs, and then apply the int8 calculation.
L
Liufang Sang 已提交
502 503 504
        
    Args:
        model_dir(str): The path of the fp32 model that will be quantized,
505
                and the model and params files are under the path.
L
Liufang Sang 已提交
506
        save_model_dir(str): The path to save the quantized model.
507 508 509 510 511 512 513 514
        model_filename(str, optional): The name of file used to load the
                inference program. If it is None, the default filename
                '__model__' will be used. Default is 'None'.
        params_filename(str, optional): The name of file used to load all
                parameters. When all parameters were saved in a single
                binary file, set it as the real filename. If parameters
                were saved in separate files, set it as 'None'. Default is
                'None'.
L
Liufang Sang 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        save_model_dir(str): The path used to save the quantized model.
        save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
        save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
        quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d", "depthwise_conv2d", "mul"].
        weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
        generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
    '''

    weight_quant = WeightQuantization(
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename)
539

L
Liufang Sang 已提交
540 541 542 543 544 545 546
    weight_quant.quantize_weight_to_int(
        save_model_dir=save_model_dir,
        save_model_filename=save_model_filename,
        save_params_filename=save_params_filename,
        quantizable_op_type=quantizable_op_type,
        weight_bits=weight_bits,
        generate_test_model=generate_test_model)
547 548 549 550 551


# We have changed the quant_post_only_weight to quant_post_dynamic.
# For compatibility, we keep quant_post_only_weight api for now,
# and it will be deprecated in the future.
552
quant_post_only_weight = quant_post_dynamic